Bibliography Tag: oxidative stress

Tang et al., 2021

Tang, J., Wang, W., Jiang, Y., & Chu, W.; “Diazinon exposure produces histological damage, oxidative stress, immune disorders and gut microbiota dysbiosis in crucian carp (Carassius auratus gibelio);” Environmental Pollution, 2021, 269, 116129; DOI: 10.1016/j.envpol.2020.116129.


Diazinon is a common organophosphate pesticide widely used to control parasitic infections in agriculture. Excessive use of diazinon can have adverse effects on the environment and aquatic animal health. In the present study, the toxic effects of diazinon on the histology, antioxidant, innate immune and intestinal microbiota community composition of crucian carp (Carassius auratus gibelio) were investigated. The results showed that diazinon at the tested concentration (300 mug/L) induced gill and liver histopathological damages. Hepatic total superoxide dismutase (T-SOD), catalase (CAT), and glutathione S-transferase (GST) activities significantly decreased (P < 0.05) by 32.47%, 65.33% and 37.34%, respectively. However, the liver tissue malondialdehyde (MDA) content significantly (P < 0.05) increased by 138.83%. The 300 mug/L diazinon significantly (P < 0.05) downregulated the gene expression of TLR4, MyD88, NF-kB p100 and IL-8 but had no significant effect TNF-alpha (P = 0.8239). In addition, the results demonstrated that diazinon exposure could affect the intestinal microbiota composition and diversity. Taken together, the results of this study indicated that diazinon exposure can cause damage to crucian carp, induce histopathological damage in gill and liver tissues, oxidative stress in the liver, and innate immune disorders and alter intestinal microbiota composition and diversity.

Abdel-Halim and Osman, 2020

Abdel-Halim, K. Y., & Osman, S. R.; “Cytotoxicity and Oxidative Stress Responses of Imidacloprid and Glyphosate in Human Prostate Epithelial WPM-Y.1 Cell Line;” Journal of Toxicology, 2020, 2020, 4364650; DOI: 10.1155/2020/4364650.


Insecticide imidacloprid and herbicide glyphosate have a broad spectrum of applicable use in the agricultural sector of Egypt. Their ability to induce in vitro cytotoxic and oxidative stress on normal human cells (prostate epithelial WPM-Y.1 cell line) was evaluated with the methyl tetrazolium test (MTT) and histopathological investigation. Cell viability was evaluated with an MTT test for 24 h. The median inhibition concentration (IC50) values were 0.023 and 0.025 mM for imidacloprid and glyphosate, respectively. Sublethal concentrations: 1/10 and 1/50 of IC50 and IC50 levels significantly induced an increase in the lactate dehydrogenase (LDH) activity and malondialdehyde (MDA) level compared with the untreated cells. Rapid decrease in the glutathione (GSH) content and glutathione-S-transferase (GST) activity was induced. Significant increases were recorded in activities of catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR), respectively, compared with the control group. Transmission electron microscopic (TEM) investigation showed significant defects in the cells following pesticide treatments for 24 h. Therefore, it is concluded that imidacloprid and glyphosate are very toxic in vitro assays and able to induce apoptotic effects as well as oxidative stress. So, these findings provide a scenario of multibiomarkers to achieve the imposed risks of pesticides at low doses. FULL TEXT

Astiz et al., 2011

Astiz, M., Arnal, N., de Alaniz, M. J., & Marra, C. A.; “Occupational exposure characterization in professional sprayers: clinical utility of oxidative stress biomarkers;” Environmental Toxicology and Pharmacology, 2011, 32(2), 249-258; DOI: 10.1016/j.etap.2011.05.010.


The impact of involuntary exposure to pesticides was studied in a group of professional sprayers (S) (25+/-5 years old) exposed to various agrochemicals for about 10 years. The results were compared with a group of non exposed people (C). S group showed hematological, renal, pancreatic and hepatic biomarkers within the reference values established for the general population, including cholinesterase activity. In spite of that, all the biochemical tests were statistically different compared to C. On the other hand, oxidative stress biomarkers (OSB) such as plasma tocopherol and the total reducing ability of plasma were significantly decreased, while protein carbonyls, thiobarbituric acid-reactive substances, total glutathione and the sum of nitrites and nitrates were increased in the exposed group. Results demonstrated that screening laboratory tests could not be fully sensitive in detecting sub-clinical exposure to pesticides, and also suggest that OSB could be validated and included in health surveillance protocols. FULL TEXT

Curl et al., 2020

Curl, C. L., Spivak, M., Phinney, R., & Montrose, L.; “Synthetic Pesticides and Health in Vulnerable Populations: Agricultural Workers;” Current Environmental Health Reports, 2020, 7(1), 13-29; DOI: 10.1007/s40572-020-00266-5.


PURPOSE OF REVIEW: This review aims to summarize epidemiological literature published between May 15, 2018, and May 14, 2019, that examines the relationship between exposure to synthetic pesticides and health of agricultural workers.

RECENT FINDINGS: Current research suggests that exposure to synthetic pesticides may be associated with adverse health outcomes. Agricultural workers represent a potentially vulnerable population, due to a combination of unique social and cultural risk factors as well as exposure to hazards inherent in agricultural work. Pesticide exposure among agricultural workers has been linked to certain cancers, DNA damage, oxidative stress, neurological disorders, and respiratory, metabolic, and thyroid effects.

SUMMARY: This review describes literature suggesting that agricultural workers exposed to synthetic pesticides are at an increased risk of certain cancers and neurological disorders. Recent research on respiratory effects is sparse, and more research is warranted regarding DNA damage, oxidative stress, metabolic outcomes, and thyroid effects. FULL TEXT

Qiu et al., 2020

Qiu, Shengnan, Fu, Huiyang, Zhou, Ruiying, Yang, Zheng, Bai, Guangdong, & Shi, Baoming; “Toxic effects of glyphosate on intestinal morphology, antioxidant capacity and barrier function in weaned piglets;” Ecotoxicology and Environmental Safety, 2020, 187; DOI: 10.1016/j.ecoenv.2019.109846.


At present, the public is paying more attention to the adverse effects of pesticides on human and animal health and the environment. Glyphosate is a broad-spectrum pesticide that is widely used in agricultural production. In this manuscript, the effects of diets containing glyphosate on intestinal morphology, intestinal immune factors, intestinal antioxidant capacity and the mRNA expression associated with the Nrf2 signaling pathway were investigated in weaned piglets. Twenty-eight healthy female hybrid weaned piglets (Duroc × Landrace × Yorkshire) were randomly selected with an average weight of 12.24 ± 0.61 kg. Weaned piglets were randomly assigned into 4 treatment groups and fed a basal diet supplemented with 0, 10, 20, and 40 mg/kg glyphosate for a 35-day feeding trial. We found that glyphosate had no effect on intestinal morphology. In the duodenum, glyphosate increased the activities of CAT and SOD (linear, P < 0.05) and increased the levels of MDA (linear and quadratic, P < 0.05). In the duodenum, glyphosate remarkably increased the relative mRNA expression levels of Nrf2 (linear and quadratic, P < 0.05) and NQO1 (linear and quadratic, P < 0.05) and reduced the relative mRNA expression levels of GPx1, HO-1 and GCLM (linear and quadratic, P < 0.05). In the jejunum, glyphosate remarkably increased the relative mRNA expression levels of Nrf2 (linear and quadratic, P < 0.05) and decreased the relative mRNA expression levels of GCLM (linear and quadratic, P < 0.05). Glyphosate increased the mRNA expression levels of IL-6 in the duodenum (linear and quadratic, P < 0.05) and the mRNA expression levels of IL-6 in the jejunum (linear, P < 0.05). Glyphosate increased the mRNA expression of NF-κB in the jejunum (linear, P = 0.05). Additionally, the results demonstrated that glyphosate linearly decreased the ZO-1 mRNA expression levels in the jejunum and the mRNA expression of claudin-1 in the duodenum (P < 0.05). In the duodenum, glyphosate increased the protein expression levels of Nrf2 (linear, P = 0.025). Overall, glyphosate exposure may result in oxidative stress in the intestines of piglets, which can be alleviated by enhancing the activities of antioxidant enzymes and self-detoxification. FULL TEXT

Beuret et al., 2005

Beuret, Cecilia Judith, Zirulnik, Fanny, & Giménez, María Sofía; “Effect of the herbicide glyphosate on liver lipoperoxidation in pregnant rats and their fetuses;” Reproductive Toxicology, 2005, 19(4), 501-504; DOI: 10.1016/j.reprotox.2004.09.009.


Glyphosate is a post-emergence herbicide that acts on the synthesis of amino acids and other endogenous metabolites in plants. It is commonly used in agriculture, forestry, and nurseries for the control or destruction of herbaceous plants. Metabolic processes during development and pregnancy could be sensitive to changes induced by glyphosate such as lipid peroxidation. The present study has investigated the effects that 1% glyphosate oral exposure has on lipoperoxidation and antioxidant enzyme systems in the maternal serum and liver of pregnant rats and their term fetuses at 21 days of gestation. The results suggest that excessive lipid peroxidation induced with glyphosate ingestion leads to an overload of maternal and fetal antioxidant defense systems.

El-Shenawy, 2009

El-Shenawy, Nahla S.; “Oxidative stress responses of rats exposed to Roundup and its active ingredient glyphosate;” Environmental Toxicology and Pharmacology, 2009, 28(3), 379-385; DOI: 10.1016/j.etap.2009.06.001.

Glyphosate is the active ingredient and polyoxyethyleneamine, the major component, is the surfactant present in the herbicide Roundup formulation. The objective of this study was to analyze potential cytotoxicity of the Roundup and its fundamental substance (glyphosate). Albino male rats were intraperitoneally treated with sub-lethal concentration of Roundup (269.9mg/kg) or glyphosate (134.95mg/kg) each 2 days, during 2 weeks. Hepatotoxicity was monitored by quantitative analysis of the serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities, total protein, albumin, triglyceride and cholesterol. Creatinine and urea were used as the biochemical markers of kidney damages. The second aim of this study to investigate how glyphosate alone or included in herbicide Roundup affected hepatic reduced glutathione (GSH) and lipid peroxidation (LPO) levels of animals as an index of antioxidant status and oxidative stress, respectively, as well as the serum nitric oxide (NO) and alpha tumour necrosis factor (TNF-α) were measured. Treatment of animals with Roundup induced the leakage of hepatic intracellular enzymes, ALT, AST and ALP suggesting irreversible damage in hepatocytes starting from the first week. It was found that the effects were different on the enzymes in Roundup and glyphosate-treated groups. Significant time-dependent depletion of GSH levels and induction of oxidative stress in liver by the elevated levels of LPO, further confirmed the potential of Roundup to induce oxidative stress in hepatic tissue. However, glyphosate caused significant increases in NO levels more than Roundup after 2 weeks of treatment. Both treatments increased the level of TNF-α by the same manner. The results suggest that excessive antioxidant disruptor and oxidative stress is induced with Roundup than glyphosate.

Owagboriaye et al., 2017

Owagboriaye, Folarin O., Dedeke, Gabriel A., Ademolu, Kehinde O., Olujimi, Olarenwaju O., Ashidi, Joseph S., & Adeyinka, Aladesida A., “Reproductive toxicity of Roundup herbicide exposure in male albino rat,” Experimental and Toxicologic Pathology, 2017, 69(7), 461-468. DOI: 10.1016/j.etp.2017.04.007.


The incidence of infertility in human is on the increase and the use of Roundup herbicide and presence of its residues in foodstuff is a major concern. This study therefore aim to assess the effect of Roundup on the reproductive capacity of 32 adult male albino rats randomized into 4 groups of 8 rats per group orally exposed to Roundup at 3.6mg/kg body weight(bw), 50.4mg/kgbw and 248.4mg/kgbw of glyphosate concentrations for 12 weeks while the control group was given distilled water. Serum level of reproductive hormone (testosterone, luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin), oxidative stress indices in the testicular tissue, epididymal sperm morphology assessment and testicular histopathology of the rats were used as a diagnostic marker of reproductive dysfunction. Significant (p<0.05) alterations in the level of all the reproductive hormones and oxidative stress markers assayed were observed in rats exposed to Roundup. Significant reductions (p<0.05) in sperm count, percentage motility and significant (p<0.05) increased in abnormal sperm cells were observed in the exposed rats. Histopathologically, severe degenerative testicular architectural lesions were seen in the Roundup exposed rats. Roundup may interfere with spermatogenesis and impair fertility in male gonad.

Owagboriaye et al., 2019

Owagboriaye, F., Dedeke, G., Ademolu, K., Olujimi, O., Aladesida, A., & Adeleke, M., “Comparative studies on endogenic stress hormones, antioxidant, biochemical and hematological status of metabolic disturbance in albino rat exposed to roundup herbicide and its active ingredient glyphosate,” Environmental Science and Pollution Research International, 2019. DOI: 10.1007/s11356-019-04759-1.


There have been growing concerns and uncertainty about reports attributing the metabolic disturbance induced by a commercial formulation of glyphosate-based herbicide to its active ingredient. We therefore compared the effects of Roundup Original(R) and its active ingredient glyphosate on some hypothalamic-pituitary-adrenal (HPA) hormones and oxidative stress markers, biochemical and hematological profiles in 56 adult male albino rats randomly assigned to seven treatments of eight rats per treatment. The rats were orally exposed to Roundup Original(R) and its active ingredient daily at 3.6 mg/kg body weight (bw), 50.4 and 248.4 mg/kgbw of glyphosate equivalent concentrations for 12 weeks, while control treatment received distilled water. Serum concentrations of corticosterone, adrenocorticotropic hormone, aldosterone and concentration of oxidative stress marker, biochemical and hematological profiles in the blood were determined. Concentrations of corticosterone and aldosterone were significantly higher (p < 0.05) in rats treated with Roundup in a dose-dependent manner. Reduced glutathione concentration, catalase, and butyrylcholinesterase activities reduced significantly in rats treated with Roundup relative to those treated with the active ingredient. Lipid peroxidation was observed in rats treated with Roundup. Biochemical and hematological profiles of rats treated with Roundup were significantly altered (p < 0.05). However, significant changes in only acid phosphatase, lactase dehydrogenase, bilirubin, and white blood cells in rats treated with the active ingredient at 50.4 mg/kg were observed. The severe metabolic disturbance and stress observed in rats treated with the commercial formulation of Roundup herbicide may not be associated with the mild changes induced by the active ingredient.

Lamure et al., 2019

Lamure, S., Carles, C., Aquereburu, Q., Quittet, P., Tchernonog, E., Paul, F., Jourdan, E., Waultier, A., Defez, C., Belhadj, I., Sanhes, L., Burcheri, S., Donadio, D., Exbrayat, C., Saad, A., Labourey, J. L., Baldi, I., Cartron, G., & Fabbro-Peray, P., “Association of Occupational Pesticide Exposure With Immunochemotherapy Response and Survival Among Patients With Diffuse Large B-Cell Lymphoma,” JAMA Network Open, 2019, 2(4), e192093. DOI: 10.1001/ jamanetworkopen.2019.2093.


IMPORTANCE: Professional use of pesticides is a risk factor for non-Hodgkin lymphoma. The main biological mechanisms of pesticides and chemotherapy are genotoxicity and reactive oxygen species generation. Cellular adaptation among patients exposed to low doses of genotoxic and oxidative compounds might hinder chemotherapy efficiency in patients with lymphoma.

OBJECTIVE: To examine the association of occupational exposure to pesticides with immunochemotherapy response and survival among patients treated for diffuse large B-cell lymphoma.

DESIGN, SETTING, AND PARTICIPANTS: This retrospective cohort study assessed patients treated from July 1, 2010, to May 31, 2015, for diffuse large B-cell lymphoma, with a 2-year follow-up. The study took place at 6 university and nonuniversity hospitals in Languedoc-Roussillon, France. A total of 404 patients with newly diagnosed diffuse large B-cell lymphoma treated with anthracycline-based immunochemotherapy were included before the study began. Occupational history was reconstructed for 244 patients and analyzed with the PESTIPOP French job-exposure matrix to determine likelihood of occupational exposure to pesticides. Analysis of the data was performed from July 15, 2017, to July 15, 2018.

MAIN OUTCOMES AND MEASURES: Treatment failure (ie, partial response, stable disease, disease progression, or interruption for toxic effects) rate, 2-year event-free survival, and overall survival between exposed and nonexposed patients after adjustment for confounding factors.

RESULTS: A total of 244 patients (mean [SD] age, 61.3 [15.2] years; 153 [62.7%] male) had complete occupational data. Of these patients, 67 (27.4%) had occupational exposure to pesticides, with 38 exposed through agricultural occupations. Occupational exposure was not associated with clinical and biological characteristics at diagnosis. Occupationally exposed patients had a significantly higher treatment failure rate (22.4% vs 11.3%; P = .03; adjusted odds ratio [AOR] for confounding factors, 3.0; 95% CI, 1.3-6.9); this difference was higher among patients with exposing agricultural occupations compared with other patients (29.0% vs 11.7%; AOR, 5.1; 95% CI, 2.0-12.8). Two-year event-free survival was 70% in the occupationally exposed group vs 82% in the unexposed group (adjusted hazard ratio [AHR] for confounding factors, 2.2; 95% CI, 1.3-3.9). Among patients with exposing agricultural occupations compared with other patients, the difference was more pronounced (2-year event-free survival, 56% vs 83%; AHR, 3.5; 95% CI, 1.9-6.5). Similarly, 2-year overall survival was lower in the group of patients with exposing agricultural occupations compared with other patients (81% vs 92%; AHR, 3.9; 95% CI, 1.5-10.0).

CONCLUSIONS AND RELEVANCE: This retrospective study showed that agricultural occupational exposure to pesticides was associated with treatment failure, event-free survival, and overall survival among patients with diffuse large B-cell lymphoma. FULL TEXT