Bibliography Tag: risk assessment

Alavanja et al., 2004

Alavanja, M. C., Hoppin, J. A., & Kamel, F.; “Health effects of chronic pesticide exposure: cancer and neurotoxicity;” Annual review of public health, 2004, 25, 155-197; DOI: 10.1146/annurev.publhealth.25.101802.123020.

ABSTRACT:

Pesticides are widely used in agricultural and other settings, resulting in continuing human exposure. Epidemiologic studies indicate that, despite premarket animal testing, current exposures are associated with risks to human health. In this review, we describe the routes of pesticide exposures occurring today, and summarize and evaluate the epidemiologic studies of pesticide-related carcinogenicity and neurotoxicity in adults. Better understanding of the patterns of exposure, the underlying variability within the human population, and the links between the animal toxicology data and human health effects will improve the evaluation of the risks to human health posed by pesticides. Improving epidemiology studies and integrating this information with toxicology data will allow the human health risks of pesticide exposure to be more accurately judged by public health policy makers. FULL TEXT


Macfarlane et al., 2013

Macfarlane, E., Carey, R., Keegel, T., El-Zaemay, S., & Fritschi, L.; “Dermal exposure associated with occupational end use of pesticides and the role of protective measures;” Safety and Health at Work, 2013, 4(3), 136-141; DOI: 10.1016/j.shaw.2013.07.004.

ABSTRACT:

BACKGROUND: Occupational end users of pesticides may experience bodily absorption of the pesticide products they use, risking possible health effects. The purpose of this paper is to provide a guide for researchers, practitioners, and policy makers working in the field of agricultural health or other areas where occupational end use of pesticides and exposure issues are of interest.

METHODS: This paper characterizes the health effects of pesticide exposure, jobs associated with pesticide use, pesticide-related tasks, absorption of pesticides through the skin, and the use of personal protective equipment (PPE) for reducing exposure.

CONCLUSIONS: Although international and national efforts to reduce pesticide exposure through regulatory means should continue, it is difficult in the agricultural sector to implement engineering or system controls. It is clear that use of PPE does reduce dermal pesticide exposure but compliance among the majority of occupationally exposed pesticide end users appears to be poor. More research is needed on higher-order controls to reduce pesticide exposure and to understand the reasons for poor compliance with PPE and identify effective training methods.

FULL TEXT


Pisa et al., 2015

Pisa, L. W., Amaral-Rogers, V., Belzunces, L. P., Bonmatin, J. M., Downs, C. A., Goulson, D., Kreutzweiser, D. P., Krupke, C., Liess, M., McField, M., Morrissey, C. A., Noome, D. A., Settele, J., Simon-Delso, N., Stark, J. D., Van der Sluijs, J. P., Van Dyck, H., & Wiemers, M.; “Effects of neonicotinoids and fipronil on non-target invertebrates;” Environmental Science and Pollution Research International, 2015, 22(1), 68-102; DOI: 10.1007/s11356-014-3471-x.

ABSTRACT:

We assessed the state of knowledge regarding the effects of large-scale pollution with neonicotinoid insecticides and fipronil on non-target invertebrate species of terrestrial, freshwater and marine environments. A large section of the assessment is dedicated to the state of knowledge on sublethal effects on honeybees (Apis mellifera) because this important pollinator is the most studied non-target invertebrate species. Lepidoptera (butterflies and moths), Lumbricidae (earthworms), Apoidae sensu lato (bumblebees, solitary bees) and the section “other invertebrates” review available studies on the other terrestrial species. The sections on freshwater and marine species are rather short as little is known so far about the impact of neonicotinoid insecticides and fipronil on the diverse invertebrate fauna of these widely exposed habitats. For terrestrial and aquatic invertebrate species, the known effects of neonicotinoid pesticides and fipronil are described ranging from organismal toxicology and behavioural effects to population-level effects. For earthworms, freshwater and marine species, the relation of findings to regulatory risk assessment is described. Neonicotinoid insecticides exhibit very high toxicity to a wide range of invertebrates, particularly insects, and field-realistic exposure is likely to result in both lethal and a broad range of important sublethal impacts. There is a major knowledge gap regarding impacts on the grand majority of invertebrates, many of which perform essential roles enabling healthy ecosystem functioning. The data on the few non-target species on which field tests have been performed are limited by major flaws in the outdated test protocols. Despite large knowledge gaps and uncertainties, enough knowledge exists to conclude that existing levels of pollution with neonicotinoids and fipronil resulting from presently authorized uses frequently exceed the lowest observed adverse effect concentrations and are thus likely to have large-scale and wide ranging negative biological and ecological impacts on a wide range of non-target invertebrates in terrestrial, aquatic, marine and benthic habitats. FULL TEXT


Mahler et al., 2021

Mahler, B. J., Nowell, L. H., Sandstrom, M. W., Bradley, P. M., Romanok, K. M., Konrad, C. P., & Van Metre, P. C.; “Inclusion of Pesticide Transformation Products Is Key to Estimating Pesticide Exposures and Effects in Small U.S. Streams;” Environmental Science & Technology, 2021; DOI: 10.1021/acs.est.0c06625.

ABSTRACT:

Improved analytical methods can quantify hundreds of pesticide transformation products (TPs), but understanding of TP occurrence and potential toxicity in aquatic ecosystems remains limited. We quantified 108 parent pesticides and 116 TPs in more than 3700 samples from 442 small streams in mostly urban basins across five major regions of the United States. TPs were detected nearly as frequently as parents (90 and 95% of streams, respectively); 102 TPs were detected at least once and 28 were detected in >20% samples in at least one region-TPs of 9 herbicides, 2 fungicides (chlorothalonil and thiophanate-methyl), and 1 insecticide (fipronil) were the most frequently detected. TPs occurred commonly during baseflow conditions, indicating chronic environmental TP exposures to aquatic organisms and the likely importance of groundwater as a TP source. Hazard quotients based on acute aquatic-life benchmarks for invertebrates and nonvascular plants and vertebrate-centric molecular endpoints (sublethal effects) quantify the range of the potential contribution of TPs to environmental risk and highlight several TP exposure-response data gaps. A precautionary approach using equimolar substitution of parent benchmarks or endpoints for missing TP benchmarks indicates that potential aquatic effects of pesticide TPs could be underestimated by an order of magnitude or more. FULL TEXT


Tang et al., 2021

Tang, Fiona H. M., Lenzen, Manfred, McBratney, Alexander, & Maggi, Federico; “Risk of pesticide pollution at the global scale;” Nature Geoscience, 2021; DOI: 10.1038/s41561-021-00712-5.

ABSTRACT:

Pesticides are widely used to protect food production and meet global food demand but are also ubiquitous environmental pollutants, causing adverse effects on water quality, biodiversity and human health. Here we use a global database of pesticide applications and a spatially explicit environmental model to estimate the world geography of environmental pollution risk caused by 92 active ingredients in 168 countries. We considered a region to be at risk of pollution if pesticide residues in the environment exceeded the no-effect concentrations, and to be at high risk if residues exceeded this by three orders of magnitude. We find that 64% of global agricultural land (approximately 24.5 million km2) is at risk of pesticide pollution by more than one active ingredient, and 31% is at high risk. Among the high-risk areas, about 34% are in high-biodiversity regions, 5% in water-scarce areas and 19% in low- and lower-middle-income nations. We identify watersheds in South Africa, China, India, Australia and Argentina as high-concern regions because they have high pesticide pollution risk, bear high biodiversity and suffer from water scarcity. Our study expands earlier pesticide risk assessments as it accounts for multiple active ingredients and integrates risks in different environmental compartments at a global scale.  FULL TEXT


Lamichhane, 2017

Lamichhane, Jay Ram; “Pesticide use and risk reduction in European farming systems with IPM: An introduction to the special issue;” Crop Protection, 2017, 97, 1-6; DOI: 10.1016/j.cropro.2017.01.017.

ABSTRACT:

Not available.

FULL TEXT


Perry et al., 2002

Perry, M. J., Marbella, A., & Layde, P. M.; “Compliance with required pesticide-specific protective equipment use;” American Journal of Industrial Medicine, 2002, 41(1), 70-73; DOI: 10.1002/ajim.10026.

ABSTRACT:

BACKGROUND: This study measured compliance with pesticide-specific protective gear use requirements practiced by farmers applying pesticides to field crops.

MATERIALS AND METHODS: Two hundred and twenty randomly selected dairy farmers were interviewed 1 week after pesticide application to determine use of personal protective equipment while applying at least 1 of 15 possible restricted use pesticides (response rate = 82.4%).

RESULTS: Among the three most common pesticides used (dicamba, atrazine, and cyanazine), the proportions of farmers fully complying with gear use requirements were 8.8, 8.6, and 2.5%, respectively. For those same pesticides, the proportions (and 95% CI) using none of the required gear were 56.9% (47.3-66.5%), 38.6% (27.2-50.0%), and 47.5%(32.0-63.0%), respectively.

CONCLUSIONS: Both full and partial compliance with required personal protective equipment was low for each of the 15 chemicals applied by the applicators in this sample.


Sheppard et al., 2020

Sheppard, L., McGrew, S., & Fenske, R. A.; “Flawed analysis of an intentional human dosing study and its impact on chlorpyrifos risk assessments;” Environment International, 2020, 143, 105905; DOI: 10.1016/j.envint.2020.105905.

ABSTRACT:

In March 1972, Frederick Coulston and colleagues at the Albany Medical College reported results of an intentional chlorpyrifos dosing study to the study’s sponsor, Dow Chemical Company. Their report concluded that 0.03 mg/kg-day was the chronic no-observed-adverse-effect-level (NOAEL) for chlorpyrifos in humans. We demonstrate here that a proper analysis by the original statistical method should have found a lower NOAEL (0.014 mg/kg-day), and that use of statistical methods first available in 1982 would have shown that even the lowest dose in the study had a significant treatment effect. The original analysis, conducted by Dow-employed statisticians, did not undergo formal peer review; nevertheless, EPA cited the Coulston study as credible research and kept its reported NOAEL as a point of departure for risk assessments throughout much of the 1980’s and 1990’s. During that period, EPA allowed chlorpyrifos to be registered for multiple residential uses that were later cancelled to reduce potential health impacts to children and infants. Had appropriate analyses been employed in the evaluation of this study, it is likely that many of those registered uses of chlorpyrifos would not have been authorized by EPA. This work demonstrates that reliance by pesticide regulators on research results that have not been properly peer-reviewed may needlessly endanger the public. FULL TEXT


Kougias et al., 2020

Kougias, D. G., Miller, E., McEwen, A., Reamer, H., Kovochich, M., & Pierce, J.; “Risk Assessment of Glyphosate Exposures from Pilot Study with Simulated Heavy Residential Consumer Application of Roundup((R)) using a Margin of Safety (MOS) Approach;” Risk Analysis, 2020; DOI: 10.1111/risa.13646.

ABSTRACT:

Due to the widespread application of glyphosate, a nonselective herbicide, to a variety of resistant food crops, the general population is exposed to glyphosate through dietary intake. Despite this, dietary exposures to glyphosate are considered low in comparison to application-related exposures. Although previous studies have evaluated exposure to horticultural and agricultural workers, to date only one study, which we recently conducted, has characterized exposure to glyphosate in consumers following heavy residential application of a glyphosate-containing herbicide in a residential yard and garden setting. In this previous study, we demonstrated that urinary glyphosate concentrations in these applicators were similar to or in some circumstances greater than those in occupational applicators, likely due to the nature of the simulation study, which ensured a heavy application protocol. However, it is unknown whether these urinary glyphosate concentrations in consumer applicators correspond to internal doses that may be of concern. Therefore, the purpose of this study is to provide a comprehensive risk assessment of glyphosate exposure in consumer applicators using a margin of safety approach. Here, we incorporated data collected from multiple spot urine samples across time from our previous study that assessed consumer exposure to glyphosate from Roundup((R)) application. Estimated internal doses, even with the use of conservative assumptions across unique approaches, were below internal doses estimated from established health-based guidance values. Overall, this study demonstrates that glyphosate exposure from even heavy consumer application of a commercially available glyphosate-containing herbicide does not appear to be a health concern. FULL TEXT


Robinson et al., 2020

Robinson, Claire, Portier, Christopher J., ČAvoŠKi, Aleksandra, Mesnage, Robin, Roger, Apolline, Clausing, Peter, Whaley, Paul, Muilerman, Hans, & Lyssimachou, Angeliki; “Achieving a High Level of Protection from Pesticides in Europe: Problems with the Current Risk Assessment Procedure and Solutions;” European Journal of Risk Regulation, 2020, 11(3), 450-480; DOI: 10.1017/err.2020.18.

ABSTRACT:

The regulation of pesticides in the European Union (EU) relies on a network of hard law (legislation and implementing acts) and soft law (non-legally binding guidance documents and administrative and scientific practices). Both hard and soft laws govern how risk assessments are conducted, but a significant role is left to the latter. Europe’s pesticide regulation is one of the most stringent in the world. Its stated objectives are to ensure an independent, objective and transparent assessment of pesticides and achieve a high level of protection for health and environment. However, a growing body of evidence shows that pesticides that have passed through this process and are authorised for use may harm humans, animals and the environment. The authors of the current paper – experts in toxicology, law and policy – identified shortcomings in the authorisation process, focusing on the EU assessment of the pesticide active substance glyphosate. The shortcomings mostly consist of failures to implement the hard or soft laws. But in some instances the law itself is responsible, as some provisions can only fail to achieve its objectives. Ways to improve the system are proposed, requiring changes in hard and soft laws as well as in administrative and scientific practices. FULL TEXT