skip to Main Content
Azole fungicides are used primarily on wheat, corn, and soybeans.

Archived Blog Posts
  • Russell King | Executive Director Reading Science: A Guide for We Who Are Not Scientists

    By Russell K. King, HHRA Executive Director Less than a week ago, the academic publisher Sage Journals retracted studies that questioned the long-established safety record of mifepristone. In December. Nature ran a piece noting that, in 2023, more than 10,000 scientific papers–a record number–were retracted. Not understanding the data, the anti-science voices decry the retractions as proof of corruption in the research community. Misunderstanding scientific publishing is an old and common problem. Early in my career, I was editor of a peer-reviewed medical journal, and part of my job was to translate the scientific language into messages more easily understood by nonscientific readers. I offer here a guide to reading scientific papers when you’re not a scientist. This method is not the only method, and I didn’t create it, but I’ve found it useful. Before I do, however, I hasten to say that the wave of retractions last year does not indicate a wave of fraud in science. The number of journals in publication rose from 1 million in 1997 to 3 million in 2020, yet the average number of retractions per journal has remained largely flat during that time.  Half of the retractions are for reasons other than fabrication, falsification, or plagiarism. The data seem to say the scientific community has stepped up.  Scientists are pressuring journals, and, in turn, journals are improving their policing of papers after publication. Reading scientific papers Step by step: 1. read the abstract to get the general idea of what the paper is about; 2. read the figures and legends to understand the data (then look to see whether they align with the conclusions in the abstract); 3. read the discussion, where the authors summarize and interpret the data (then see whether it aligns with the data in the figures and the overview in the abstract); and 4. if it’s not your field of expertise (true for most of us, even if it’s hard to admit), read the introduction to get a feel for what the relevant literature says; 5. if you’re evaluating how they got from the data to the conclusions, read the discussion (are they using standard methods, missing controls, using a representative sample and a control group, etc.?); and 6. read through a few references to see whether they say what the authors claim they do (padding the references with papers that do not fit is often a way to build false credibility). Red flags As you’re reading, keep your eyes open for signs that should cause you to pause and question the paper’s validity. Red flags don’t necessarily mean the paper is untrustworthy, just that we should not draw conclusions without digging deeper.  Some such red flags are: 1. the author has no expertise in the subject of the paper (is their degree in a relevant field, have they worked in the field, have they previously published in the field in reputable journals?)–crossovers are not uncommon, but these will typically have a coauthor who has credible expertise; 2. the references are old, meaning fewer than six citations from the past five years; 3. the results asserted are not closely tied to the data or are not placed in context with other studies; 4. the conclusions contradict the literature or general scientific consensus–advances happen, but this should prompt us to withhold judgment until we get more information; 5. funders are not disclosed; 6. conflicts of interest are not declared; and 7. the results have not been peer reviewed. Know yourself Because science and anti-science have become such powerful forces in cultural and political differences, it’s vital that we check ourselves as we read and evaluate scientific papers. No matter how well trained we are in critical thinking, no matter how separate we think we are from the cultural and political echo chambers around us, we are still human and we are still given to myriad thinking errors. To deal with the overwhelming amount of information our brains take in, our brains seek shortcuts to lessen the burden. Sometimes these shortcuts are helpful; too often they are not. At minimum, we process information through our personal confirmation bias and a complex, overlapping, ever-changing matrix of internal filters made of everything from our DNA to what we had for lunch. We must ask ourselves–more often than is comfortable–whether our understanding of what we’re reading is being distorted by our own emotions, preferences, prejudices, assumptions, and hopes. This requires us to be honest with ourselves about our emotions, preferences, prejudices, assumptions, and hopes. Read! Science is always emerging, never static. By the moment, it grows ever broader, deeper, more beautiful, more fascinating, and more important to our lives. We depend on science to bring us new information and understanding, to correct the errors of our past and–yes–to retract papers that are erroneous. The 10,000 retractions of 2023 should enhance, not undermine, our appreciation for the men and women of science who share their work with us.  What’s happening in science is exciting, and I promise you that reading about it is more than worth the effort.    

  • Securing the Future of Science: Planned Giving for HHRA

    Planned giving is the process of donating planned gifts, also known as legacy gifts, which are contributions that are arranged in the present and allocated at a future date. Commonly donated through a will or trust, planned gifts are usually granted when a donor passes away.  If you’d like to plan a gift for to support the important work of HHRA, you may use this form.  Thank you. Tax benefits:  Donors can contribute appreciated property, like securities or real estate, receive a charitable deduction for the full market value of the asset, and pay no capital gains tax on the transfer.  Donors who establish a life-income gift receive a tax deduction for the full, fair market value of the assets contributed, minus the present value of the income interest retained; if they fund their gift with appreciated property they pay no upfront capital gains tax on the transfer.  Gifts payable to the HHRA upon the donor’s death, like a bequest or a beneficiary designation in a life insurance policy or retirement account, do not generate a lifetime income tax deduction for the donor, but they are exempt from estate tax. More information: For those who wish to make legacy gifts that are guaranteed to support their own philanthropic interests and intentions, planned or deferred gifts may be most effective. Planned gifts require more planning than most current gifts or income or equity, often including legal and accounting counsel from a donor’s trusted advisors. Because these gifts produce philanthropic benefits to recipient organizations, there may be benefits to the donors or their heirs via reductions in state or federal income, capital gains, estate, or gift taxes. There are many ways to make planned gifts, the most simple of which are life insurance policies, designated distributions from retirement funds, or bequests, where donors designate a percentage or a specific amount of their estate to the recipient charity.  Specific amounts are preferable, as they do not require a full valuation of the estate before distribution can be made. For donors over the age of 70 ½ years who are required to take minimum annual distributions from their Traditional or Roth Individual Retirement Accounts (IRAs), up to $100,000 may be directed to charitable causes, with potentially significant tax savings each year. More complex planned giving arrangements such as charitable gift annuities, charitable remainder unitrusts, charitable remainder annuity trusts, lead trusts and others may provide donors with guaranteed income for the remainder of their lives in exchange for funds transferred to charities now. The gist of most such gift vehicles involves a donor making a current gift to a charity with commensurate tax benefits, the charity paying the donor per agreed-upon terms from those funds in the years that follow, with the remainder of the funds at the donor’s death remaining with the charity in perpetuity.

  • HHRA Earns 2024 Highest Recognition for Transparency

    By Russell K. King, HHRA Executive Director I’m pleased to announce that the HHRA has once again earned the Candid Platinum Seal of Transparency (our first was in 2023)-–an achievement earned by fewer than one percent of US-based nonprofits. The Candid Platinum Seal is the highest level of recognition offered by Candid (formerly known as GuideStar) and is awarded to organizations that meet the highest standards of transparency and accountability. The Candid Platinum Seal demonstrates the HHRA’s commitment to transparency and accountability. Our board, staff, volunteers, and partners believe that by sharing our data, metrics, and strategic priorities with the public, we can build trust and confidence in our organization and our work. To earn the Candid Platinum Seal, non-profit organizations must meet a rigorous set of criteria, including providing complete and accurate information about their mission, programs, finances, and governance on the Candid website, and sharing strategic priorities and information about outcomes.

  • Russell King | Executive Director The Importance of Integrity

    By Russell K. King, HHRA Executive Director Living, as we do, during an era overwhelmed by misinformation, disinformation, mistrust, grifters, posers, and pretenders, integrity is an increasingly rare and valuable quality. For a nonprofit organization like the HHRA, integrity is essential. By funding the Heartland Study, we are seeking the answer to a controversial question:  Are there health problems for mothers and infants that correlate to higher exposure of agricultural chemicals? Why is that controversial? Because there are people who insist they already know the answer and, regardless of whether they insist it’s “yes” or “no,” they prefer we don’t ask. They have vested interests in the answers they promote and fear an unbiased scientific inquiry may produce an answer that does not support those interests. A vested interest—”a strong personal interest in something because you could get an advantage from it,” according to the Cambridge Dictionary—is deadly to integrity. We don’t know whether we’re being told the truth or being told what advances your interest, so we can’t fully believe you. Doubt will endure and undermine your message. Thankfully, the HHRA has no vested interest in the outcome of the Heartland Study. The chair of the HHRA Science Advisory Committee insists we must be “agnostic about the outcome,” and the chair of the HHRA Board of Directors insists we must not “get ahead of the data.”  The principle investigator for the Heartland Study oft reminds us to “always let the science lead.”  As the HHRA executive director, I don’t care what the answer is, but I’m certain the question must be asked. The HHRA and the scientists working on the Heartland Study are not out to prove the answer is yes or no, but to learn whether the answer is yes or no. Likewise, our donors are supporting the effort to find “the” answer not “an” answer. There are no foregone conclusions here. All of which points to the integrity of our mission and our work. Integrity is demonstrated and enhanced by transparency, which is why the HHRA makes public its IRS determination letter, audited financials, bylaws (including our conflict of interest policy), strategic plan, gift acceptance policy, volunteers and staff, and the Heartland Study’s methods paper, published in a peer-reviewed journal.  Such transparency has already earned the highest award from Candid. Integrity yields many positive results.  First, the people and foundations that support the HHRA can know that the money they donate is being used for its stated purpose.  Second, and more importantly, the people who will eventually learn of our outcomes and recommendations, if any, can know that they can trust what they’re being told. That trust will make it more likely that our work will be used in improving public health.  And that is what it’s all about.

  • Russell K. King | Executive Director Holding the “Splendid Torch”

    By Russell K. King, MBA, HHRA Executive Director This time of year is especially rich with holidays that inspire deeper thoughts about our lives.  While peering through the steam rising from my coffee and contemplating my own mix of Thanksgiving gratitude, Christmas joy, and New Year’s hope and resolution, I heard the words of G. B. Shaw coming back to me: “This is the true joy in life, being used for a purpose recognized by yourself as a mighty one. Being a force of nature instead of a feverish, selfish little clod of ailments and grievances, complaining that the world will not devote itself to making you happy. I am of the opinion that my life belongs to the whole community and as long as I live, it is my privilege to do for it what I can. I want to be thoroughly used up when I die, for the harder I work, the more I live. I rejoice in life for its own sake. Life is no brief candle to me. It is a sort of splendid torch which I have got hold of for the moment and I want to make it burn as brightly as possible before handing it on to future generations.” Shaw’s words drew the HHRA into my musing.  Yes, the mission of the HHRA is a purpose I find “mighty” for which I hope to be “used up,” but I realized it’s much more than just one mighty purpose or worthy cause.  Within the HHRA mission, there are a number of splendid torches we may proudly carry. In the HHRA’s flagship program, the Heartland Study, we can find the worthy causes of maternal health, children’s health and development, environmental health, and public health, among others.  The HHRA’s Dietary Risk Index encompasses at least the worthy causes of consumer choice, food safety, and public health. Our Pesticide Use Data System and policy recommendations activities are also fertile with worthy efforts and promise. In our era, science is too often twisted to suit political, religious, and pecuniary ends, but the HHRA holds high the splendid torch of science as a search for truth.  The chair of our board oft reminds us “not to get ahead of the data,” and the chair of our science advisory committee reminds us of our obligation to be “agnostic about the outcomes” of our study.  I’m proud to say my own life has been spent promoting science and combating both pseudoscience and anti-science.  While much of the world tries to create data to fit their agenda, we are trying to learn what the data tell us.  Of all the splendid torches the HHRA offers us, my own favorite me be this:  Science unfettered by ulterior motives. In this season of reflection and contemplation of the deeper things of life, I urge you to recognize and cherish the worthy causes you are serving with your life.  If you’re still searching for a worthy cause that will bring you a taste of Shaw’s “true joy in life,” I invite you to join and support our work at the HHRA.  Find your splendid torch and carry it high!

Fungicides Use, a Resistant Pathogen, and Rising Death Rates — CDC Connects the Dots

May 5th, 2021
May 5th, 2021
Azole fungicides are used primarily on wheat, corn, and soybeans.

In the 1950s and 1960s, rapidly rising use of antibiotics to promote growth of farm animals triggered mutations leading to resistant bacteria that have found ways to jump into the human population.

For most of the last one-half century, over 7 pounds of antibiotics have been given to farm animals for every 1 pound administered to people. Pigs, chickens, and beef cattle have been an important, and perhaps the primary well from which new antibiotic resistant genes have emerged.

In the 1970s and 1980s, insecticides and herbicides took over primary insect and weed control duty on most American farmers. The better a particular pesticide worked, the more farmers came to rely on it. But just as in the case with antibiotics on the farm, excessive reliance triggered the emergence and spread of resistant strains of many economically damaging pests.

And so, no one should be surprised that the rapidly rising use of triazole fungicides by farmers over the last decade is now contributing to the emergence and spread of fungal pathogens that cause human disease. But not just any run-of-the-mill fungal pathogen.

A new paper by a team of scientists from the Centers for Disease Control (CDC) and US Geological Survey (USGS), “Trends in Agricultural Triazole Fungicide Use in the United States, 1992–2016 and Possible Implications for Antifungal-Resistant Fungi in Human Disease,” tracks the rising frequency in phenotypes of the fungus A. fumigatus that are resistant to triazole drugs (Toda et al., 2021).

A. fumigatus can lodge in and attack the lungs. It is the leading cause of invasive mold infections, especially in people with weakened immune systems. Death rates range between 25% and 59%, but average 25% higher when a patient is infected with triazole-resistant A. fumigatus.

The CDC team points out that some A. fumigatus strains carry resistance markers that have been associated with environmental fungicide use, rather than previous patient exposure to antifungal, triazole drugs.

Key Findings

This fungicide research was led by a team from CDC with support from USGS.

CDC analyzed fungicide use data from the USGS and found that from 2006–2016, triazole use in agriculture more than quadrupled (up 434%) to 2,880 metric tons in just a decade. Since 2016, triazole use has risen another 15%. Worldwide, triazoles account for about one-quarter of total fungicide use in agriculture.

Wheat, corn, soybeans, and other crops in the Midwest and Southeast accounted for most of the increase. Until about a decade ago, almost no corn acres were sprayed with any fungicide. In 2021 over 30% of the national crop will likely be treated. A triazole fungicide will be the product of choice for about one-third of these treatments.

HHRA has prepared two tables with national data on the use of 13 triazole fungicides from 1991 through 2019. The data were retrieved from HHRA’s Pesticide Use Data System (PUDS).

Access here a table tracking changes in pounds applied of the 5 mostly heavily used triazoles, other triazoles, and all triazoles. Figure 1 below tracks the remarkable rise in use since the early 2000s.

Access here a similar table showing the upward trend in acre-treatments with triazole fungicides. Figure 2 presents these data graphically. Access the Excel workbook with these tables and figures here.

Note in both figures that over the last decade propiconazole plus tebuconazole have accounted for 58% to 75% of the total pounds and acre-treatments made with all triazole fungicides. These two fungicides are among those most structurally similar to the triazole medications widely used to treat A. fumigatus infections.

The CDC team stresses the need to conduct more intensive monitoring of A. fumigatus populations to track the spread of triazole resistant phenotypes. They call for more focused research on what is driving the steep increase in triazole fungicide use on some crops. Since the early 1990s, the pounds of triazole fungicides applied has risen 15-fold. Over 50 million acre-treatments were made with a triazole in 2019, or close to 15% of all harvested cropland in the US.

What is Driving the Rapid Rise in Triazole Fungicide Use?

In short, unhealthy soil and sick plants.

Over the last 50 years farmers have intensified crop production in multiple ways.

The number of corn, soybean, wheat, and cotton seeds planted per acre has at least tripled, and on some farms seeding rates have gone up four-fold. This means plant root systems now overlap and share the same soil. A soil-borne pathogen infecting one plant can infect another without moving.

With today’s high seeding rates, about 35,000 corn plants per acre are separated by only inches, instead of about a foot as in the past. When the wind blows, plants rub against each other, causing abrasions through which fungal spores and bacteria can enter plants. Once in the door, disease can often flourish.

To obtain optimal yields of corn, farmers must apply 150-250 pounds of nitrogen (N) fertilizer. As seeding rates rise, the amount of N needed per bushel rises and N-use efficiency falls.

The spike in soil N levels following fertilizer applications triggers explosions in the populations of certain microorganisms and crashes in the population of others. This cycle degrades soil health over time. The absence of healthy, diverse soil microbial communities opens the door to opportunistic pathogens and soil-borne insects.

Slipping soil health increases pest pressure. Incrementally greater pest pressure triggers more pesticide use. More chemicals cause further damage to soil ecosystems, leading to new pests and more problems. It’s a vicious circle that a growing number of farmers are now struggling to severe.

Most of the corn, soybeans, and cotton grown in the US is planted with seeds genetically engineered (GE) to express multiple transgenes conferring resistance to herbicides. In the case of corn and cotton, GE plants also produce Bt endotoxins to combat sucking, chewing insects. Most corn and cotton varieties express two or three Bt endotoxins, and SmartStax corn produces six and is resistant to three herbicides.

These GE plants have multiple genetic elements added to them designed to turn on these added traits at the right time, in the right place, and hopefully turn them off when not needed. The combined effect of these novel genes in GE cultivars can disrupt, delay, overamp, or block a plant’s normal response to biotic and abiotic stress, sometimes leading to new plant health problems.

This new CDC paper confirms that farmers, the pesticide industry, scientists, and physicians have a new problem to worry about. Like many others, this new problem is grounded in plant and soil health and caused by the practices, technologies, and systems farmers have relied on to drive crop yields upward.

Source:

Toda, Mitsuru, Beer, Karlyn D., Kuivila, Kathryn M., Chiller, Tom M., & Jackson, Brendan R.; “Trends in Agricultural Triazole Fungicide Use in the United States, 1992–2016 and Possible Implications for Antifungal-Resistant Fungi in Human Disease;” Environmental Health Perspectives, 2021, 129(5); DOI: 10.1289/ehp7484.

Back To Top