skip to Main Content
Azole fungicides are used primarily on wheat, corn, and soybeans.

Archived Blog Posts
  • Dr. Kimberly Yolton joins HHRA board

    Dr. Yolton is a developmental psychologist and epidemiologist serving as Professor of Pediatrics at Cincinnati Children’s Hospital Medical Center. Her interests include exposures and experiences that may alter a child’s developmental trajectory from infancy through adolescence. She collaborates on research projects on typical child development as well as those focused on the impact of exposures to environmental toxicants, opiates and stress during early development.

  • Paul Hartnett, HHRA’s Executive Director

      Paul Hartnett has served as HHRA’s CFO since our founding . With the departure of Russell King, Paul has now joined the board and Executive Director. We thank Russell for his service and wish him the best in his future endeavors.

  • Heartland Study Enrolls 1,000th Mother-Infant Pair

    July 19, 2024 – In June of this year, the Heartland Study achieved a major milestone, enrolling its 1,000th mother-infant pair. Enrollment is now at 50% of goal. The objective of the Study is to help fill major gaps in our understanding of the impacts of herbicides on maternal and infant health. Currently in Phase 1, the Study is focused on evaluating associations between herbicide concentrations in body fluids and tissue samples from pregnant women and infants, and pregnancy/childbirth outcomes. Phase 2 is designed to evaluate potential associations between herbicide biomarkers and early childhood neurological development. Much appreciation for the mothers enrolled, and the entire Heartland Study Team including scientists, support staff and clinicians for this tremendous achievement, and for our funders to making this work possible. Read more about the study including peer-reviewed studies published in Chemosphere and Agrichemicals at our publications  page. The investment required to conduct this study exceeds $1 million each year. You can support this important work by making a donation here.

  • Consumer Reports Releases Comprehensive, Science-Based Report Highlighting Pesticide Risks in Fruits and Vegetables

    By Thomas Green, PhD, chair, HHRA Board of Directors Consumer Reports (CR) published a cover story today on pesticides on fruits and vegetables in the US food supply. CR concluded that “20% of the 59 fruit and vegetables tested posed a high risk from pesticides.” Blueberries, green beans, watermelons, bell peppers, potatoes, kale, and mustard greens were among the 12 highest-risk foods. What’s going on here? The United States Department of Agriculture (USDA) annually publishes a report with results from pesticide residue sampling completed two years prior. In January, the USDA’s report assured consumers that 99% of more than 10,000 samples of foods collected in 2022 had pesticides at or below EPA-set legal limits. To add to the confusion, the EWG (formerly Environmental Working Group) follows up each USDA report with its “Shopper’s Guide to Pesticides in Produce” and its widely promoted Dirty Dozen and Clean 15 lists. This year, EWG “determined that 75 percent of all conventional fresh produce sampled had residues of potentially harmful pesticides.” Blueberries, green beans, bell peppers, potatoes, kale, and mustard greens made the EWG’s Dirty Dozen, but not watermelon. Grapes and peaches also made the Dirty Dozen but didn’t make CR’s list of 12 highest risk foods. Three very different perspectives, yet all three organizations use the same data source! Residue data are generated by the USDA, which collects and tests domestic and imported food samples from our food distribution system in multiple states each year. Why the discrepancy in findings? Here’s the story The USDA uses “residue tolerances” established by the US Environmental Protection Agency (EPA). Residues under the tolerance level are regarded as safe. Foods with pesticide residues over the tolerance render the food adulterated. Food declared as such is supposed to be removed from the marketplace but fresh produce rarely is. The EPA tracks total dietary exposures to a given pesticide based on all tolerances that have been approved and by law must determine that there is a “reasonable certainty of no harm” from total exposures. As reported by the USDA this year, of the 10,665 samples collected in 2022, 325 had pesticide residues exceeding the tolerance or present in the absence of a tolerance, or about 3% in total. A third of the samples with over-tolerance, presumptively unsafe residues were US-grown; two-thirds were imported foods. In 2022, 27% of samples tested had no detectable residues. The EWG uses pesticide residue detections, so regardless of the tolerance level set for a pesticide, each residue detected is counted. A food makes the Dirty Dozen list if it is among the foods with the highest number of pesticide residues. Residues of some pesticides known to pose health hazard are weighted more heavily. The EWG typically lumps US and foreign-grown food in their report. In the report released today, CR analyzed USDA data on 59 foods in more than 26,000 samples tested by the USDA over seven years (2016-2022). CR used EPA-set toxicity thresholds for most pesticides but added the full 10-fold safety factor called for in federal law to several more high-risk pesticides than the EPA does. CR scientists consider the EPA’s tolerances to be too high for some pesticides, so they developed these lower limits for “pesticides that can harm the body’s neurological system” or are suspected of interfering with human hormones. The analytical work supporting the CR report was completed by a team led by the HHRA’s founder and first executive director Chuck Benbrook, and grounded in analyses conducted using the Dietary Risk Index (DRI) system currently housed on the HHRA’s website. The DRI is also included in the Pesticide Risk Tool, developed by a team I led and housed at the IPM Institute. I co-founded the IPM Institute in 1998 where our Sustainable Food Group continues to work with food companies and supply chains to reduce pesticide risks among other initiatives. So which report wins the day? All three have value, and all three point to opportunities for improvement. Without the USDA’s highly regarded pesticide residue testing program, efforts to reduce the frequency of high-risk residues would be like shooting in the dark. Of the three analyses, the USDA’s report represents the least conservative approach to estimating risk. Yet the level of tolerance violations reported by the USDA represents hundreds of millions of presumptively unsafe servings of food in the US every year! The EWG and CR take a more conservative approach to estimating and avoiding risk. Both organizations recognize that not all potential risks have been identified or accounted for in EPA risk estimates. For example, we all ingest multiple pesticide residues daily via food and drink, but their combined risk is not taken into account by the EPA. CR’s approach is more science-based and more closely aligned with the EPA’s dietary risk assessment. CR’s methodology is driven by measured residue levels, EPA-set exposure thresholds based mostly on animal studies, and standard food serving sizes. Not all pesticide residues pose equal risk, in fact they vary by over 10,000-fold! What’s the bottom line? All three organizations recommend that everyone should eat lots of fresh fruits and vegetables. The benefits to health outweigh the risks of pesticide exposure. The EWG recommends consumers buy organic versions of its Dirty Dozen. CR recommends limiting consumption of foods they have identified as highest risk to ½ serving per day or less, and buying organic when available and affordable. A common question is, “Can I remove pesticide residues by washing?” Before testing, food samples used in these reports are at a minimum lightly washed. Additional washing may help but will not achieve anywhere near our potential to reduce risk. It’s important to highlight that US-grown conventional food samples have generated fewer tolerance violations year after year compared to imported food, and that organic foods have also consistently generated far fewer violations than conventionally grown samples. In addition, the overall pesticide risk reduction achieved for birds, bees, and people since passage of the Food Quality Protection Act in 1996 has been astounding and readily […]

  • Reading Science: A Guide for We Who Are Not Scientists

    By Russell K. King, HHRA Executive Director Less than a week ago, the academic publisher Sage Journals retracted studies that questioned the long-established safety record of mifepristone. In December. Nature ran a piece noting that, in 2023, more than 10,000 scientific papers–a record number–were retracted. Not understanding the data, the anti-science voices decry the retractions as proof of corruption in the research community. Misunderstanding scientific publishing is an old and common problem. Early in my career, I was editor of a peer-reviewed medical journal, and part of my job was to translate the scientific language into messages more easily understood by nonscientific readers. I offer here a guide to reading scientific papers when you’re not a scientist. This method is not the only method, and I didn’t create it, but I’ve found it useful. Before I do, however, I hasten to say that the wave of retractions last year does not indicate a wave of fraud in science. The number of journals in publication rose from 1 million in 1997 to 3 million in 2020, yet the average number of retractions per journal has remained largely flat during that time.  Half of the retractions are for reasons other than fabrication, falsification, or plagiarism. The data seem to say the scientific community has stepped up.  Scientists are pressuring journals, and, in turn, journals are improving their policing of papers after publication. Reading scientific papers Step by step: 1. read the abstract to get the general idea of what the paper is about; 2. read the figures and legends to understand the data (then look to see whether they align with the conclusions in the abstract); 3. read the discussion, where the authors summarize and interpret the data (then see whether it aligns with the data in the figures and the overview in the abstract); and 4. if it’s not your field of expertise (true for most of us, even if it’s hard to admit), read the introduction to get a feel for what the relevant literature says; 5. if you’re evaluating how they got from the data to the conclusions, read the discussion (are they using standard methods, missing controls, using a representative sample and a control group, etc.?); and 6. read through a few references to see whether they say what the authors claim they do (padding the references with papers that do not fit is often a way to build false credibility). Red flags As you’re reading, keep your eyes open for signs that should cause you to pause and question the paper’s validity. Red flags don’t necessarily mean the paper is untrustworthy, just that we should not draw conclusions without digging deeper.  Some such red flags are: 1. the author has no expertise in the subject of the paper (is their degree in a relevant field, have they worked in the field, have they previously published in the field in reputable journals?)–crossovers are not uncommon, but these will typically have a coauthor who has credible expertise; 2. the references are old, meaning fewer than six citations from the past five years; 3. the results asserted are not closely tied to the data or are not placed in context with other studies; 4. the conclusions contradict the literature or general scientific consensus–advances happen, but this should prompt us to withhold judgment until we get more information; 5. funders are not disclosed; 6. conflicts of interest are not declared; and 7. the results have not been peer reviewed. Know yourself Because science and anti-science have become such powerful forces in cultural and political differences, it’s vital that we check ourselves as we read and evaluate scientific papers. No matter how well trained we are in critical thinking, no matter how separate we think we are from the cultural and political echo chambers around us, we are still human and we are still given to myriad thinking errors. To deal with the overwhelming amount of information our brains take in, our brains seek shortcuts to lessen the burden. Sometimes these shortcuts are helpful; too often they are not. At minimum, we process information through our personal confirmation bias and a complex, overlapping, ever-changing matrix of internal filters made of everything from our DNA to what we had for lunch. We must ask ourselves–more often than is comfortable–whether our understanding of what we’re reading is being distorted by our own emotions, preferences, prejudices, assumptions, and hopes. This requires us to be honest with ourselves about our emotions, preferences, prejudices, assumptions, and hopes. Read! Science is always emerging, never static. By the moment, it grows ever broader, deeper, more beautiful, more fascinating, and more important to our lives. We depend on science to bring us new information and understanding, to correct the errors of our past and–yes–to retract papers that are erroneous. The 10,000 retractions of 2023 should enhance, not undermine, our appreciation for the men and women of science who share their work with us.  What’s happening in science is exciting, and I promise you that reading about it is more than worth the effort.    

Fungicides Use, a Resistant Pathogen, and Rising Death Rates — CDC Connects the Dots

May 5th, 2021
May 5th, 2021
Azole fungicides are used primarily on wheat, corn, and soybeans.

In the 1950s and 1960s, rapidly rising use of antibiotics to promote growth of farm animals triggered mutations leading to resistant bacteria that have found ways to jump into the human population.

For most of the last one-half century, over 7 pounds of antibiotics have been given to farm animals for every 1 pound administered to people. Pigs, chickens, and beef cattle have been an important, and perhaps the primary well from which new antibiotic resistant genes have emerged.

In the 1970s and 1980s, insecticides and herbicides took over primary insect and weed control duty on most American farmers. The better a particular pesticide worked, the more farmers came to rely on it. But just as in the case with antibiotics on the farm, excessive reliance triggered the emergence and spread of resistant strains of many economically damaging pests.

And so, no one should be surprised that the rapidly rising use of triazole fungicides by farmers over the last decade is now contributing to the emergence and spread of fungal pathogens that cause human disease. But not just any run-of-the-mill fungal pathogen.

A new paper by a team of scientists from the Centers for Disease Control (CDC) and US Geological Survey (USGS), “Trends in Agricultural Triazole Fungicide Use in the United States, 1992–2016 and Possible Implications for Antifungal-Resistant Fungi in Human Disease,” tracks the rising frequency in phenotypes of the fungus A. fumigatus that are resistant to triazole drugs (Toda et al., 2021).

A. fumigatus can lodge in and attack the lungs. It is the leading cause of invasive mold infections, especially in people with weakened immune systems. Death rates range between 25% and 59%, but average 25% higher when a patient is infected with triazole-resistant A. fumigatus.

The CDC team points out that some A. fumigatus strains carry resistance markers that have been associated with environmental fungicide use, rather than previous patient exposure to antifungal, triazole drugs.

Key Findings

This fungicide research was led by a team from CDC with support from USGS.

CDC analyzed fungicide use data from the USGS and found that from 2006–2016, triazole use in agriculture more than quadrupled (up 434%) to 2,880 metric tons in just a decade. Since 2016, triazole use has risen another 15%. Worldwide, triazoles account for about one-quarter of total fungicide use in agriculture.

Wheat, corn, soybeans, and other crops in the Midwest and Southeast accounted for most of the increase. Until about a decade ago, almost no corn acres were sprayed with any fungicide. In 2021 over 30% of the national crop will likely be treated. A triazole fungicide will be the product of choice for about one-third of these treatments.

HHRA has prepared two tables with national data on the use of 13 triazole fungicides from 1991 through 2019. The data were retrieved from HHRA’s Pesticide Use Data System (PUDS).

Access here a table tracking changes in pounds applied of the 5 mostly heavily used triazoles, other triazoles, and all triazoles. Figure 1 below tracks the remarkable rise in use since the early 2000s.

Access here a similar table showing the upward trend in acre-treatments with triazole fungicides. Figure 2 presents these data graphically. Access the Excel workbook with these tables and figures here.

Note in both figures that over the last decade propiconazole plus tebuconazole have accounted for 58% to 75% of the total pounds and acre-treatments made with all triazole fungicides. These two fungicides are among those most structurally similar to the triazole medications widely used to treat A. fumigatus infections.

The CDC team stresses the need to conduct more intensive monitoring of A. fumigatus populations to track the spread of triazole resistant phenotypes. They call for more focused research on what is driving the steep increase in triazole fungicide use on some crops. Since the early 1990s, the pounds of triazole fungicides applied has risen 15-fold. Over 50 million acre-treatments were made with a triazole in 2019, or close to 15% of all harvested cropland in the US.

What is Driving the Rapid Rise in Triazole Fungicide Use?

In short, unhealthy soil and sick plants.

Over the last 50 years farmers have intensified crop production in multiple ways.

The number of corn, soybean, wheat, and cotton seeds planted per acre has at least tripled, and on some farms seeding rates have gone up four-fold. This means plant root systems now overlap and share the same soil. A soil-borne pathogen infecting one plant can infect another without moving.

With today’s high seeding rates, about 35,000 corn plants per acre are separated by only inches, instead of about a foot as in the past. When the wind blows, plants rub against each other, causing abrasions through which fungal spores and bacteria can enter plants. Once in the door, disease can often flourish.

To obtain optimal yields of corn, farmers must apply 150-250 pounds of nitrogen (N) fertilizer. As seeding rates rise, the amount of N needed per bushel rises and N-use efficiency falls.

The spike in soil N levels following fertilizer applications triggers explosions in the populations of certain microorganisms and crashes in the population of others. This cycle degrades soil health over time. The absence of healthy, diverse soil microbial communities opens the door to opportunistic pathogens and soil-borne insects.

Slipping soil health increases pest pressure. Incrementally greater pest pressure triggers more pesticide use. More chemicals cause further damage to soil ecosystems, leading to new pests and more problems. It’s a vicious circle that a growing number of farmers are now struggling to severe.

Most of the corn, soybeans, and cotton grown in the US is planted with seeds genetically engineered (GE) to express multiple transgenes conferring resistance to herbicides. In the case of corn and cotton, GE plants also produce Bt endotoxins to combat sucking, chewing insects. Most corn and cotton varieties express two or three Bt endotoxins, and SmartStax corn produces six and is resistant to three herbicides.

These GE plants have multiple genetic elements added to them designed to turn on these added traits at the right time, in the right place, and hopefully turn them off when not needed. The combined effect of these novel genes in GE cultivars can disrupt, delay, overamp, or block a plant’s normal response to biotic and abiotic stress, sometimes leading to new plant health problems.

This new CDC paper confirms that farmers, the pesticide industry, scientists, and physicians have a new problem to worry about. Like many others, this new problem is grounded in plant and soil health and caused by the practices, technologies, and systems farmers have relied on to drive crop yields upward.

Source:

Toda, Mitsuru, Beer, Karlyn D., Kuivila, Kathryn M., Chiller, Tom M., & Jackson, Brendan R.; “Trends in Agricultural Triazole Fungicide Use in the United States, 1992–2016 and Possible Implications for Antifungal-Resistant Fungi in Human Disease;” Environmental Health Perspectives, 2021, 129(5); DOI: 10.1289/ehp7484.

Back To Top