skip to Main Content
*Co-Authors Madeline and Dr. Charles Mellinger are, respectively, Founder/CEO and Technical Director of Glades Crop Care in Jupiter, Florida. Madeline is also a member of the Farm Foundation. HHRA ED Charles Benbrook has worked as a consultant and collaborator with GCC on the adoption of biointensive Integrated Pest Management systems for 40 years.

Archived Blog Posts
  • Dr. Kimberly Yolton joins HHRA board

    Dr. Yolton is a developmental psychologist and epidemiologist serving as Professor of Pediatrics at Cincinnati Children’s Hospital Medical Center. Her interests include exposures and experiences that may alter a child’s developmental trajectory from infancy through adolescence. She collaborates on research projects on typical child development as well as those focused on the impact of exposures to environmental toxicants, opiates and stress during early development.

  • Paul Hartnett, HHRA’s Executive Director

      Paul Hartnett has served as HHRA’s CFO since our founding . With the departure of Russell King, Paul has now joined the board and Executive Director. We thank Russell for his service and wish him the best in his future endeavors.

  • Heartland Study Enrolls 1,000th Mother-Infant Pair

    July 19, 2024 – In June of this year, the Heartland Study achieved a major milestone, enrolling its 1,000th mother-infant pair. Enrollment is now at 50% of goal. The objective of the Study is to help fill major gaps in our understanding of the impacts of herbicides on maternal and infant health. Currently in Phase 1, the Study is focused on evaluating associations between herbicide concentrations in body fluids and tissue samples from pregnant women and infants, and pregnancy/childbirth outcomes. Phase 2 is designed to evaluate potential associations between herbicide biomarkers and early childhood neurological development. Much appreciation for the mothers enrolled, and the entire Heartland Study Team including scientists, support staff and clinicians for this tremendous achievement, and for our funders to making this work possible. Read more about the study including peer-reviewed studies published in Chemosphere and Agrichemicals at our publications  page. The investment required to conduct this study exceeds $1 million each year. You can support this important work by making a donation here.

  • Consumer Reports Releases Comprehensive, Science-Based Report Highlighting Pesticide Risks in Fruits and Vegetables

    By Thomas Green, PhD, chair, HHRA Board of Directors Consumer Reports (CR) published a cover story today on pesticides on fruits and vegetables in the US food supply. CR concluded that “20% of the 59 fruit and vegetables tested posed a high risk from pesticides.” Blueberries, green beans, watermelons, bell peppers, potatoes, kale, and mustard greens were among the 12 highest-risk foods. What’s going on here? The United States Department of Agriculture (USDA) annually publishes a report with results from pesticide residue sampling completed two years prior. In January, the USDA’s report assured consumers that 99% of more than 10,000 samples of foods collected in 2022 had pesticides at or below EPA-set legal limits. To add to the confusion, the EWG (formerly Environmental Working Group) follows up each USDA report with its “Shopper’s Guide to Pesticides in Produce” and its widely promoted Dirty Dozen and Clean 15 lists. This year, EWG “determined that 75 percent of all conventional fresh produce sampled had residues of potentially harmful pesticides.” Blueberries, green beans, bell peppers, potatoes, kale, and mustard greens made the EWG’s Dirty Dozen, but not watermelon. Grapes and peaches also made the Dirty Dozen but didn’t make CR’s list of 12 highest risk foods. Three very different perspectives, yet all three organizations use the same data source! Residue data are generated by the USDA, which collects and tests domestic and imported food samples from our food distribution system in multiple states each year. Why the discrepancy in findings? Here’s the story The USDA uses “residue tolerances” established by the US Environmental Protection Agency (EPA). Residues under the tolerance level are regarded as safe. Foods with pesticide residues over the tolerance render the food adulterated. Food declared as such is supposed to be removed from the marketplace but fresh produce rarely is. The EPA tracks total dietary exposures to a given pesticide based on all tolerances that have been approved and by law must determine that there is a “reasonable certainty of no harm” from total exposures. As reported by the USDA this year, of the 10,665 samples collected in 2022, 325 had pesticide residues exceeding the tolerance or present in the absence of a tolerance, or about 3% in total. A third of the samples with over-tolerance, presumptively unsafe residues were US-grown; two-thirds were imported foods. In 2022, 27% of samples tested had no detectable residues. The EWG uses pesticide residue detections, so regardless of the tolerance level set for a pesticide, each residue detected is counted. A food makes the Dirty Dozen list if it is among the foods with the highest number of pesticide residues. Residues of some pesticides known to pose health hazard are weighted more heavily. The EWG typically lumps US and foreign-grown food in their report. In the report released today, CR analyzed USDA data on 59 foods in more than 26,000 samples tested by the USDA over seven years (2016-2022). CR used EPA-set toxicity thresholds for most pesticides but added the full 10-fold safety factor called for in federal law to several more high-risk pesticides than the EPA does. CR scientists consider the EPA’s tolerances to be too high for some pesticides, so they developed these lower limits for “pesticides that can harm the body’s neurological system” or are suspected of interfering with human hormones. The analytical work supporting the CR report was completed by a team led by the HHRA’s founder and first executive director Chuck Benbrook, and grounded in analyses conducted using the Dietary Risk Index (DRI) system currently housed on the HHRA’s website. The DRI is also included in the Pesticide Risk Tool, developed by a team I led and housed at the IPM Institute. I co-founded the IPM Institute in 1998 where our Sustainable Food Group continues to work with food companies and supply chains to reduce pesticide risks among other initiatives. So which report wins the day? All three have value, and all three point to opportunities for improvement. Without the USDA’s highly regarded pesticide residue testing program, efforts to reduce the frequency of high-risk residues would be like shooting in the dark. Of the three analyses, the USDA’s report represents the least conservative approach to estimating risk. Yet the level of tolerance violations reported by the USDA represents hundreds of millions of presumptively unsafe servings of food in the US every year! The EWG and CR take a more conservative approach to estimating and avoiding risk. Both organizations recognize that not all potential risks have been identified or accounted for in EPA risk estimates. For example, we all ingest multiple pesticide residues daily via food and drink, but their combined risk is not taken into account by the EPA. CR’s approach is more science-based and more closely aligned with the EPA’s dietary risk assessment. CR’s methodology is driven by measured residue levels, EPA-set exposure thresholds based mostly on animal studies, and standard food serving sizes. Not all pesticide residues pose equal risk, in fact they vary by over 10,000-fold! What’s the bottom line? All three organizations recommend that everyone should eat lots of fresh fruits and vegetables. The benefits to health outweigh the risks of pesticide exposure. The EWG recommends consumers buy organic versions of its Dirty Dozen. CR recommends limiting consumption of foods they have identified as highest risk to ½ serving per day or less, and buying organic when available and affordable. A common question is, “Can I remove pesticide residues by washing?” Before testing, food samples used in these reports are at a minimum lightly washed. Additional washing may help but will not achieve anywhere near our potential to reduce risk. It’s important to highlight that US-grown conventional food samples have generated fewer tolerance violations year after year compared to imported food, and that organic foods have also consistently generated far fewer violations than conventionally grown samples. In addition, the overall pesticide risk reduction achieved for birds, bees, and people since passage of the Food Quality Protection Act in 1996 has been astounding and readily […]

  • Reading Science: A Guide for We Who Are Not Scientists

    By Russell K. King, HHRA Executive Director Less than a week ago, the academic publisher Sage Journals retracted studies that questioned the long-established safety record of mifepristone. In December. Nature ran a piece noting that, in 2023, more than 10,000 scientific papers–a record number–were retracted. Not understanding the data, the anti-science voices decry the retractions as proof of corruption in the research community. Misunderstanding scientific publishing is an old and common problem. Early in my career, I was editor of a peer-reviewed medical journal, and part of my job was to translate the scientific language into messages more easily understood by nonscientific readers. I offer here a guide to reading scientific papers when you’re not a scientist. This method is not the only method, and I didn’t create it, but I’ve found it useful. Before I do, however, I hasten to say that the wave of retractions last year does not indicate a wave of fraud in science. The number of journals in publication rose from 1 million in 1997 to 3 million in 2020, yet the average number of retractions per journal has remained largely flat during that time.  Half of the retractions are for reasons other than fabrication, falsification, or plagiarism. The data seem to say the scientific community has stepped up.  Scientists are pressuring journals, and, in turn, journals are improving their policing of papers after publication. Reading scientific papers Step by step: 1. read the abstract to get the general idea of what the paper is about; 2. read the figures and legends to understand the data (then look to see whether they align with the conclusions in the abstract); 3. read the discussion, where the authors summarize and interpret the data (then see whether it aligns with the data in the figures and the overview in the abstract); and 4. if it’s not your field of expertise (true for most of us, even if it’s hard to admit), read the introduction to get a feel for what the relevant literature says; 5. if you’re evaluating how they got from the data to the conclusions, read the discussion (are they using standard methods, missing controls, using a representative sample and a control group, etc.?); and 6. read through a few references to see whether they say what the authors claim they do (padding the references with papers that do not fit is often a way to build false credibility). Red flags As you’re reading, keep your eyes open for signs that should cause you to pause and question the paper’s validity. Red flags don’t necessarily mean the paper is untrustworthy, just that we should not draw conclusions without digging deeper.  Some such red flags are: 1. the author has no expertise in the subject of the paper (is their degree in a relevant field, have they worked in the field, have they previously published in the field in reputable journals?)–crossovers are not uncommon, but these will typically have a coauthor who has credible expertise; 2. the references are old, meaning fewer than six citations from the past five years; 3. the results asserted are not closely tied to the data or are not placed in context with other studies; 4. the conclusions contradict the literature or general scientific consensus–advances happen, but this should prompt us to withhold judgment until we get more information; 5. funders are not disclosed; 6. conflicts of interest are not declared; and 7. the results have not been peer reviewed. Know yourself Because science and anti-science have become such powerful forces in cultural and political differences, it’s vital that we check ourselves as we read and evaluate scientific papers. No matter how well trained we are in critical thinking, no matter how separate we think we are from the cultural and political echo chambers around us, we are still human and we are still given to myriad thinking errors. To deal with the overwhelming amount of information our brains take in, our brains seek shortcuts to lessen the burden. Sometimes these shortcuts are helpful; too often they are not. At minimum, we process information through our personal confirmation bias and a complex, overlapping, ever-changing matrix of internal filters made of everything from our DNA to what we had for lunch. We must ask ourselves–more often than is comfortable–whether our understanding of what we’re reading is being distorted by our own emotions, preferences, prejudices, assumptions, and hopes. This requires us to be honest with ourselves about our emotions, preferences, prejudices, assumptions, and hopes. Read! Science is always emerging, never static. By the moment, it grows ever broader, deeper, more beautiful, more fascinating, and more important to our lives. We depend on science to bring us new information and understanding, to correct the errors of our past and–yes–to retract papers that are erroneous. The 10,000 retractions of 2023 should enhance, not undermine, our appreciation for the men and women of science who share their work with us.  What’s happening in science is exciting, and I promise you that reading about it is more than worth the effort.    

Securing the Future Supply of Apple Pie and Related Challenges

Nov 23rd, 2021
Nov 23rd, 2021
*Co-Authors Madeline and Dr. Charles Mellinger are, respectively, Founder/CEO and Technical Director of Glades Crop Care in Jupiter, Florida. Madeline is also a member of the Farm Foundation. HHRA ED Charles Benbrook has worked as a consultant and collaborator with GCC on the adoption of biointensive Integrated Pest Management systems for 40 years.

By Madeline Mellinger, Charles Mellinger, and Charles Benbrook*

What does Mike’s Pies in Florida have in common with a pregnant woman in the Midwest who is worried about the potential impact of rising herbicide use on her pregnancy and soon-to-be delivered child?

It turns out a lot. “How climate change and extreme weather are crimping America’s pie supply” (Laura Reiley, Washington Post, November 17, 2021) explains the myriad of ways climate change has disrupted the food-supply chains supporting Mike’s Pies in Florida.

Glades Crop Care (GCC) is one of South Florida’s largest and oldest independent crop consulting firms. Crop Care works with growers and shippers producing Florida’s fruit and vegetable crops. Disruptions all along farm-to-table supply chains starting out in GCC-grower fields have been unprecedented.

The list of endemic and disruptive forces impacting Florida agriculture is a long one. Big hitters include new invasive pests, water issues and runoff, labor shortages, demand changes due to COVID-19 lockdowns, endless economic pressures and the many factors undermining our growers’ profit margins.

But there are four major drivers of ag and food industry problems that all Americans should be concerned about. Collectively they are beginning to cut deeply into the muscle of American agriculture.

Plant pathogens like the citrus greening shown here are often worsened by climate change.

First, climate change is leading to more frequent and severe droughts and flooding. The GCC team is struggling to help growers preserve at least some of the Florida citrus industry plagued now for over a decade by greening disease. Too often our scouts deal with a new pest or one that is surging and beginning to require more frequent pesticide treatments.

Second, growing high-quality fruits and vegetables and getting them to people and into Mike’s pies takes people with skills and experience, time, and patience — and a living wage all along food chains. Those people who promise a robot for this and a drone for that mistake growing food for writing computer code. Artificial Intelligence has its place, but will benefit farmers only when wisely deployed and not asked to do too much.

Biological systems don’t follow code or behave as we think they should. Boots on the ground connected to people with experience and knowledge cannot be replaced. Those companies, academic institutions, and enthusiastic entrepreneurs promising solutions programmable from smartphones are overstating what artificial intelligence can bring to the task of feeding the world.

Third, cheaper imports arguably dumped into the US market have been steadily trimming the diversity of fresh produce grown and marketed in Florida, Texas, the Southwest and key production regions in California, Oregon and Washington.

The price of land, water, inputs, regulatory compliance and labor is much higher in all these states than in Mexico, Latin and South America, and many other countries. Our markets are the promised land for them. Their success comes at the expense of our growers and our nation’s capacity to feed our people. How about this radical idea — Buy local, or at least American.

Fourth, we see no end in sight of climate-change driven shifts in pest pressure. Some of our pests in South Florida are headed north into Georgia and the mid-West where they will pose new challenges. Our growers in South Florida will be contending with new invasive pests from Cuba, Latin America, and the Caribbean. Movement of people creates movement of pests and pathogens and resistance genes. Our inspection systems need upgrades because prevention is so much cheaper and better than treatment.

And farmers everywhere will have to find ways to contend with the growing number of pests that have become or are becoming resistant to several, if not most widely used pesticides.

This brings us to the connection between Mike’s Pies and pregnant women in the Midwest. In the Heartland the spread of weeds resistant to most widely used herbicides is driving an unprecedented increase in reliance on higher-risk herbicides and may soon threaten the sustainability of corn-soybean production, the backbone of the US food system.

Rising herbicide use is accompanied by rising human exposures. Pregnant women, infants and children are the most vulnerable among us when pesticide exposures are rising. Climate change in the Midwest is making weed management even more challenging.

Rising use = Rising Exposure. Concern about the possible health implications to our most vulnerable – pregnant women, infants, and children – of increased herbicide use is why our team came together to plan and conduct The Heartland Study.

Solving the climate-change driven problems facing Mike’s Pies in Florida and corn and soybean farmers in Iowa will be the stress test for this generation of farmers, food companies, scientists and policy makers.

For the health of the next generation of babies born in the Midwest and apple pie lovers in Florida, we need to address these four major drivers of change more effectively. Let’s encourage unbiased research. We worry that the scope and scale of challenges facing farmers and the food industry might outpace agricultural system and food industry innovation. If that happens we will have to become accustomed to periodic shortages of apple pie and a whole lot more.

 

Back To Top