skip to Main Content

Bibliography Tag: analytical methods

Hernandez et al, 2013

Hernandez, A. F., Parron, T., Tsatsakis, A. M., Requena, M., Alarcon, R., & Lopez-Guarnido, O.; “Toxic effects of pesticide mixtures at a molecular level: their relevance to human health;” Toxicology, 2013, 307, 136-145; DOI: 10.1016/j.tox.2012.06.009.

ABSTRACT:

Pesticides almost always occur in mixtures with other ones. The toxicological effects of low-dose pesticide mixtures on the human health are largely unknown, although there are growing concerns about their safety. The combined toxicological effects of two or more components of a pesticide mixture can take one of three forms: independent, dose addition or interaction. Not all mixtures of pesticides with similar chemical structures produce additive effects; thus, if they act on multiple sites their mixtures may produce different toxic effects. The additive approach also fails when evaluating mixtures that involve a secondary chemical that changes the toxicokinetics of the pesticide as a result of its increased activation or decreased detoxification, which is followed by an enhanced or reduced toxicity, respectively. This review addresses a number of toxicological interactions of pesticide mixtures at a molecular level. Examples of such interactions include the postulated mechanisms for the potentiation of pyrethroid, carbaryl and triazine herbicides toxicity by organophosphates; how the toxicity of some organophosphates can be potentiated by other organophosphates or by previous exposure to organochlorines; the synergism between pyrethroid and carbamate compounds and the antagonism between triazine herbicides and prochloraz. Particular interactions are also addressed, such as those of pesticides acting as endocrine disruptors, the cumulative toxicity of organophosphates and organochlorines resulting in estrogenic effects and the promotion of organophosphate-induced delayed polyneuropathy. FULL TEXT

Backhaus and Faust, 2012

Backhaus, T., & Faust, M.; “Predictive environmental risk assessment of chemical mixtures: a conceptual framework;” Environmental Science & Technology, 2012, 46(5), 2564-2573; DOI: 10.1021/es2034125.

ABSTRACT:

Environmental risks of chemicals are still often assessed substance-by-substance, neglecting mixture effects. This may result in risk underestimations, as the typical exposure is toward multicomponent chemical “cocktails”. We use the two well established mixture toxicity concepts (Concentration Addition (CA) and Independent Action (IA)) for providing a tiered outline for environmental hazard and risk assessments of mixtures, focusing on general industrial chemicals and assuming that the “base set” of data (EC50s for algae, crustaceans, fish) is available. As mixture toxicities higher than predicted by CA are rare findings, we suggest applying CA as a precautious first tier, irrespective of the modes/mechanisms of action of the mixture components. In particular, we prove that summing up PEC/PNEC ratios might serve as a justifiable CA-approximation, in order to estimate in a first tier assessment whether there is a potential risk for an exposed ecosystem if only base-set data are available. This makes optimum use of existing single substance assessments as more demanding mixture investigations are requested only if there are first indications of an environmental risk. Finally we suggest to call for mode-of-action driven analyses only if error estimations indicate the possibility for substantial differences between CA- and IA-based assessments. FULL TEXT

Perry et al., 2019

Perry, M. J., Mandrioli, D., Belpoggi, F., Manservisi, F., Panzacchi, S., & Irwin, C.; “Historical evidence of glyphosate exposure from a US agricultural cohort;” Environmental Health, 2019, 18(1), 42; DOI: 10.1186/s12940-019-0474-6.

ABSTRACT:

In response to the recent review by Gillezeau et al., The evidence of human exposure to glyphosate: A review, Environmental Health 1/19/19, here we report additional glyphosate biomonitoring data from a repository of urine samples collected from United States farmers in 1997-98. To determine if glyphosate exposure could be identified historically, we examined urine samples from a biorepository of specimens collected from US dairy farmers between 1997 and 98. We compared samples from farmers who self-reported glyphosate application in the 8 h prior to sample collection to samples from farm applicators who did not report using glyphosate. Of 18 applicator samples tested, 39% showed detectable levels of glyphosate (mean concentration 4.04 mug/kg; range:1.3-12) compared to 0% detections among 17 non glyphosate applicator samples (p-value < 0.01). One of the applicator samples that tested positive for glyphosate also tested positive for AMPA. Concentrations of glyphosate were consistent with levels reported in the prior occupational biomonitoring studies reviewed by Gillezeau et al.Accurately detecting both glyphosate and AMPA in this small sample of Wisconsin farmers demonstrates a) glyphosate exposures among farmers were occurring 20 years ago, which was prior to the widespread planting of genetically engineered glyphosate tolerant crops first approved in 1996; and b) liquid chromatography tandem mass spectrometry (LC-MS/MS) can be used for sensitive characterization in cryopreserved urine samples. These data offer an important historical benchmark to which urinary levels from current and future biomonitoring studies can be compared. FULL TEXT

Bus, 2015

Bus, J. S.; “Analysis of Moms Across America report suggesting bioaccumulation of glyphosate in U.S. mother’s breast milk: Implausibility based on inconsistency with available body of glyphosate animal toxicokinetic, human biomonitoring, and physico-chemical data;” Regulatory Toxicology and Pharmacology, 2015, 73(3), 758-764; DOI: 10.1016/j.yrtph.2015.10.022.

ABSTRACT:

The non-peer-reviewed biomonitoring report published online by Moms Across America (MAA; Honeycutt and Rowlands, 2014) does not support the conclusion that glyphosate concentrations detected in a limited number of urine samples from women, men and children, or breast milk from nursing mothers, pose a health risk to the public, including nursing children. Systemically absorbed doses of glyphosate estimated from the MAA urine biomonitoring data and from other published biomonitoring studies indicate that daily glyphosate doses are substantially below health protective reference standards (ADIs; RfDs) established by regulatory agencies. The MAA report also suggested that detection of relatively high glyphosate concentrations in breast milk in 3 of 10 sampled women raised a concern for bioaccumulation in breast milk. However, the breast milk concentrations reported by MAA are highly implausible when considered in context to low daily systemic doses of glyphosate estimated from human urine biomonitoring data, and also are inconsistent with animal toxicokinetic data demonstrating no evidence of retention in tissues or milk after single- or multiple-dose glyphosate treatment. In addition, toxicokinetic studies in lactating goats have shown that glyphosate does not partition into milk at concentrations greater than blood, and that only a very small percentage of the total administered dose (<0.03%) is ultimately excreted into milk. The toxicokinetic studies also indicate that human glyphosate exposures estimated from urine biomonitoring fall thousands-of-fold short of external doses capable of producing blood concentrations sufficient to result in the breast milk concentrations described in the MAA report. Finally, in contrast to highly lipophilic compounds with bioaccumulation potential in breast milk, the physico-chemical properties of glyphosate indicate that it is highly hydrophilic (ionized) at physiological pH and unlikely to preferentially distribute into breast milk. FULL TEXT

Hall et al., 1989

Hall, J. Christopher, Deschamps, Raymond J. A., & Krieg, Kim K.; “Immunoassays for the detection of 2,4-D and picloram in river water and urine;” Journal of Agricultural and Food Chemistry, 1989, 37(4), 981-984; DOI: 10.1021/jf00088a035.

ABSTRACT:

Immunoassays for 2,4-D [ (2,4-dichlorophenoxy)acetic acid] and picloram (4-amino-3,5,6-trichloro-2pyridinecarboxylic acid) detection were developed with polyclonal antibodies raised in New Zealand white rabbits. Concentrations of 2,4-D within the working range 100-10 000 and 50-10 0oO ng/mL could be quantitated with an indirect enzyme-linked immunosorbent assay (ELISA) and a radioimmunoassay (RIA) in river water and urine, respectively. Concentrations of picloram within the working range 50-5000 ng/mL also could be quantitated in river water and urine by RIA. Determinations using the immunoassays required no sample cleanup. Specificities of the antisera for structurally similar herbicides were low compared to 2,4-D or picloram. The RIA methods incorporated a novel radiolabel consisting of [3H]glycine covalently linked to the herbicide molecule. When compared to the ELISA, the RIA was a more simple, efficient, and rapid procedure, requiring fewer steps to complete the assay. The immunoassays would be suitable for herbicide quantitation in applicator exposure and environmental fate studies. FULL TEXT

Singh et al., 2020

Singh, Simranjeet, Kumar, Vijay, Datta, Shivika, Wani, Abdul Basit, Dhanjal, Daljeet Singh, Romero, Romina, & Singh, Joginder; “Glyphosate uptake, translocation, resistance emergence in crops, analytical monitoring, toxicity and degradation: a review;” Environmental Chemistry Letters, 2020; DOI: 10.1007/s10311-020-00969-z.

ABSTRACT:

The herbicide glyphosate is widely used to control weeds in grain crops. The overuse of glyphosate has induced issues such as contamination of surface water, decreased soils fertility, adverse effects on soil microbiota and possible incorporation in food chains. Here we review biochemical, agricultural, microbiological and analytical aspects of glyphosate. We discuss uptake, translocation, toxicity, degradation, complexation behaviour, analytical monitoring techniques and resistance emergence in crops. We provide data of glyphosate toxicity on different ecosystems. Experiments reveal that excessive glyphosate use induces stress on crops and on non-target plants, and is toxic for mammalians, microorganisms and invertebrates. The long half-life period of glyphosate and its metabolites under different environmental conditions is a major concern. Development of analytical methods for the detection of glyphosate is important because glyphosate has no chromophoric or fluorophoric groups. FULL TEXT

Crump et al., 2020

Crump, K., Crouch, E., Zelterman, D., Crump, C., & Haseman, J.; “Accounting for Multiple Comparisons in Statistical Analysis of the Extensive Bioassay Data on Glyphosate;” Toxicology Science, 2020; DOI: 10.1093/toxsci/kfaa039.

ABSTRACT:

Glyphosate is a widely used herbicide worldwide. In 2015, the International Agency for Research on Cancer (IARC) reviewed glyphosate cancer bioassays and human studies and declared that the evidence for carcinogenicity of glyphosate is sufficient in experimental animals. We analyzed ten glyphosate rodent bioassays, including those in which IARC found evidence of carcinogenicity, using a multi-response permutation procedure that adjusts for the large number of tumors eligible for statistical testing and provides valid false-positive probabilities. The test statistics for these permutation tests are functions of p-values from a standard test for dose-response trend applied to each specific type of tumor. We evaluated three permutation tests, using as test statistics the smallest p-value from a standard statistical test for dose-response trend and the number of such tests for which the p-value is less than or equal to 0.05 or 0.01. The false-positive probabilities obtained from two implementations of these three permutation tests are: smallest p-value: 0.26, 0.17, p-values </= 0.05: 0.08, 0.12, p-values </= 0.01: 0.06, 0.08. In addition, we found more evidence for negative dose-response trends than positive. Thus, we found no strong evidence that glyphosate is an animal carcinogen. The main cause for the discrepancy between IARC’s finding and ours appears to be that IARC did not account for the large number of tumor responses analyzed and the increased likelihood that several of these would show statistical significance simply by chance. This work provides a more comprehensive analysis of the animal carcinogenicity data for this important herbicide than previously available. FULL TEXT

Sviridov et al., 2015

Sviridov, A. V., Shushkova, T. V., Ermakova, I. T., Ivanova, E. V., Epiktetov, D. O., & Leont’evskii, A. A.; “[Microbial degradation of glyphosate herbicides (review)];” Prikl Biokhim Mikrobiol, 2015, 51(2), 183-190; DOI: 10.7868/s0555109915020221.

ABSTRACT:

This review analyzes the issues associated with biodegradation of glyphosate (N-(phosphonomethyl)glycine), one of the most widespread herbicides. Glyphosate can accumulate in natural environments and can be toxic not only for plants but also for animals and bacteria. Microbial transformation and mineralization of glyphosate, as the only means of its rapid degradation, are discussed in detail. The different pathways of glyphosate catabolism employed by the known destructing bacteria representing different taxonomic groups are described. The potential existence of alternative glyphosate degradation pathways, apart from those mediated by C-P lyase and glyphosate oxidoreductase, is considered. Since the problem of purifying glyphosate-contaminated soils and water bodies is a topical issue, the possibilities of applying glyphosate-degrading bacteria for their bioremediation are discussed. FULL TEXT

Thacker, 2020

Thacker, Paul D, “Transparency and Conflicts in Science: History of Influence, Scandal, and Denial,” Chapter 1 in Integrity, Transparency and Corruption in Healthcare & Research on Health, 2020,Volume I (pp. 3-26), Springer Nature Singapore.

ABSTRACT:

Corporate finances influence many areas of science, originating with tobacco companies which hired public relations firms to protect their profits from research on the harms of smoking. Despite a large body of studies finding that money biases research, scientists and academic organizations fail to embrace the peer-reviewed research on corporate influence. In many instances, they reject the science and try to rationalize behavior, leading a cycle of scandal, followed by reform, followed by later scandal. Because corporate influence is so pervasive and often denied, policymakers must understand this history as well as the research on financial conflicts of interest to protect the public. FULL TEXT

Vineis, 2019

Vineis, P.; “Public Health and Independent Risk Assessment;” American Journal of Public Health, 2019, 109(7), 978-980; DOI: 10.2105/AJPH.2019.305142.

FULL TEXT

Back To Top