skip to Main Content

Project Bibliography

Bibliographies Grouped by Tag:
24 D | Adjuvants | Agricultural Health Study | Agrochemicals | AMPA | Analytical Methods | Atrazine | Autism | Biodiversity | Biomarkers | Biomonitoring | Birth Cohort Studies | Birth Defects | Birthweight | Cancer | Children | Chlorpyrifos | Climate Change | Communicating Science | Crop Science | Cumulative Toxicity | Cypermethrin | Cytotoxicity | DDT | Desiccation | Developmental Impacts | Diazinon | Dicamba | Dicamba Part I | Dicamba Part II | Dicamba Part III | Dicamba Watch | Diet | Dietary Risk | Diversified Weed Management/Integrated Pest Management (IPM) | DNA Damage | Economics | Endocrine Disruptors | Endosulfan | Environmental Health | Environmental Impacts | Environmental Racism | EPA Regulation | Epidemiological Studies | Epigenetic Impacts | Ethics and Environmental Justice | ethnicity | Exposure | Exposure at School and Public Spaces | Exposure in Pets | Female Reproductive Impacts | Fertility | Food Systems | Full Text Available | Fungicides | Gastrointestinal Impacts | GBH | Gender | Genetically Modified Crops | Genotoxicity | Gestational Length | Glufosinate | Glyphosate | Heartland Region | Herbicide Exposure | Herbicide Industry Labels and User Guides | Herbicide Use | Herbicides | HHRA Publication | Imidacloprid | Insecticides | Invertebrate Toxicity | Kidney Disease | Liver Damage | Lowdown on Roundup Part I | Lowdown on Roundup Part II | Lowdown on Roundup Part III | Lowdown on Roundup Part IV | Male Reproductive Impacts | Maternal Gut Microbiome | Meta-Analysis or Review Paper | Metolachlor | Microbiome | Miscarriage Rate | Multi-omics | National Cancer Institute | Neonicotinoids | Neurodevelopmental Toxicity | Nitric Oxide | Obesity | Occupational Exposure | Organic | Organic vs Conventional | Organochlorines | Organophosphates | Other Health Risks | Oxamyl | Oxidative Stress | Paraquat | Parkinson's Disease | Persistent Organic Pollutants | Pesticide Drift | Pesticide Effectiveness | Pesticide Exposure | Pesticide Legislation | Pesticide Registration | Pesticide Residues | Pesticide Resistance | Pesticide Toxicity | Pesticide Use | Policy and Politics | Pollinators | Pregestational Obesity | Pregnancy | prenatal | Public Health | Pyrethroids | Regenerative Agriculture | Remediation | Reproductive Impacts | Resistant Weeds | Risk Assessment | Roundup | Rural Health | Science Team Publication | Seasonal | Soil Health | Sperm Quality | Surfactants | Toxicity | Traizoles | Trends Analysis | Weed Management Systems
Combine bibliography tags from the above list:

Mesnage et al., 2017

Mesnage R, Renney G, Séralini GE, Ward M, Antoniou MN, “Multiomics reveal non-alcoholic fatty liver disease in rats following chronic exposure to an ultra-low dose of Roundup herbicide,” Scientific Reports, 2017, 7:39328, DOI: 10.1038/srep39328.

ABSTRACT: The impairment of liver function by low environmentally relevant doses of glyphosate-based herbicides (GBH) is still a debatable and unresolved matter. Previously we have shown that rats administered for 2 years with 0.1 ppb (50 ng/L glyphosate equivalent dilution; 4 ng/kg body weight/day daily intake) of a Roundup GBH formulation showed signs of enhanced liver injury as indicated by anatomorphological, blood/urine biochemical changes and transcriptome profiling. Here we present a multiomic study combining metabolome and proteome liver analyses to obtain further insight into the Roundup-induced pathology. Proteins significantly disturbed (214 out of 1906 detected, q < 0.05) were involved in organonitrogen metabolism and fatty acid β-oxidation. Proteome disturbances reflected peroxisomal proliferation, steatosis and necrosis. The metabolome analysis (55 metabolites altered out of 673 detected, p < 0.05) confirmed lipotoxic conditions and oxidative stress by showing an activation of glutathione and ascorbate free radical scavenger systems. Additionally, we found metabolite alterations associated with hallmarks of hepatotoxicity such as γ-glutamyl dipeptides, acylcarnitines, and proline derivatives. Overall, metabolome and proteome disturbances showed a substantial overlap with biomarkers of non-alcoholic fatty liver disease and its progression to steatohepatosis and thus confirm liver functional dysfunction resulting from chronic ultra-low dose GBH exposure.  FULL TEXT


Mesnage et al., 2012b

Mesnage R, Moesch C, Le Grand R, Lauthier G, de Vendomois JS, Gress S, Seralini GR, “Glyphosate exposure in a farmer’s family,”  Journal of Environmental Protection, 3:1001-1003, DOI: 10.4236/jep.2012.39115.

ABSTRACT: We tested the presence of glyphosate in the urines of a farmer who sprayed a glyphosate based herbicide on his land, and in his family, as his children were born with birth defects that could be due to or promoted by pesticides. Glyphosate residues were measured in urines a day before, during, and two days after spraying, by liquid chromatography-linear ion trap mass spectrometry. Glyphosate reached a peak of 9.5 µg/L in the farmer after spraying, and 2 µg/L were found in him and in one of his children living at a distance from the field, two days after the pulverization. Oral or dermal absorptions could explain the differential pesticide excretions, even in family members at a distance from the fields. A more detailed following of agricultural practices and family exposures should be advocated together with information and recommendations.  FULL TEXT

 


Manikkam et al., 2012b

Manikkam M, Guerrero-Bosagna C, Tracey R, Haque MM, Skinner MK, “Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures,” PLoS One, 2012, 7:2.
ABSTRACT:
Environmental factors during fetal development can induce a permanent epigenetic change in the germ line (sperm) that then transmits epigenetic transgenerational inheritance of adult-onset disease in the absence of any subsequent exposure. The epigenetic transgenerational actions of various environmental compounds and relevant mixtures were investigated with the use of a pesticide mixture (permethrin and insect repellant DEET), a plastic mixture (bisphenol A and phthalates), dioxin (TCDD) and a hydrocarbon mixture (jet fuel, JP8). After transient exposure of F0 gestating female rats during the period of embryonic gonadal sex determination, the subsequent F1-F3 generations were obtained in the absence of any environmental exposure. The effects on the F1, F2 and F3 generations pubertal onset and gonadal function were assessed. The plastics, dioxin and jet fuel were found to promote early-onset female puberty transgenerationally (F3 generation). Spermatogenic cell apoptosis was affected transgenerationally. Ovarian primordial follicle pool size was significantly decreased with all treatments transgenerationally. Differential DNA methylation of the F3 generation sperm promoter epigenome was examined. Differential DNA methylation regions (DMR) were identified in the sperm of all exposure lineage males and found to be consistent within a specific exposure lineage, but different between the exposures. Several genomic features of the DMR, such as low density CpG content, were identified. Exposure-specific epigenetic biomarkers were identified that may allow for the assessment of ancestral environmental exposures associated with adult onset disease.  FULL TEXT

Manikkam et al., 2012

Manikkam M, Tracey R, Guerrero-Bosagna C, Skinner MK, “Pesticide and insect repellent mixture (permethrin and DEET) induces epigenetic transgenerational inheritance of disease and sperm epimutations,” Reproductive Toxicology, 2012,  34:4,  DOI: 10.1016/j.reprotox.2012.08.010.

ABSTRACT:

Environmental compounds are known to promote epigenetic transgenerational inheritance of disease. The current study was designed to determine if a “pesticide mixture” (pesticide permethrin and insect repellent N,N-diethyl-meta-toluamide, DEET) promotes epigenetic transgenerational inheritance of disease and associated DNA methylation epimutations in sperm. Gestating F0 generation female rats were exposed during fetal gonadal sex determination and the incidence of disease evaluated in F1 and F3 generations. There were significant increases in the incidence of total diseases in animals from pesticide lineage F1 and F3 generation animals. Pubertal abnormalities, testis disease, and ovarian disease (primordial follicle loss and polycystic ovarian disease) were increased in F3 generation animals. Analysis of the pesticide lineage F3 generation sperm epigenome identified 363 differential DNA methylation regions (DMR) termed epimutations. Observations demonstrate that a pesticide mixture (permethrin and DEET) can promote epigenetic transgenerational inheritance of adult onset disease and potential sperm epigenetic biomarkers for ancestral environmental exposures.  FULL TEXT


Manfo et al., 2012

Manfo FP, Moundipa PF, Déchaud H, Tchana AN, Nantia EA, Zabot MT, Pugeat M, “Effect of agropesticides use on male reproductive function: a study on farmers in Djutitsa (Cameroon),” Environmental Toxicology, 2012, 27:7, DOI: 10.1002/tox.20656.

ABSTRACT:  This study aimed at investigating the effect of agropesticides on male reproductive function in farmers in Djutitsa (West Cameroon). To this end, 47 farmers in Djutitsa were asked questions on their health status and pesticide use in agriculture. Thereafter, their blood samples were collected for assessment of sex hormones including serum luteinizing hormone (LH), follicle-stimulating hormone (FSH), androstenedione, testosterone, as well as sex hormone binding globulin (SHBG). Their serum triiodothyronine (T3) and thyroxine (T4) levels were also measured. Thirty seven men not exposed to agropesticides were recruited as control group. Fifty six pesticides containing 25 active substances were currently used by farmers enrolled in our study, and most of their symptoms were related to spread/use of these chemicals. Compared to the control group, there was no significant difference in FSH, LH, SHBG, estradiol, and thyroid hormones (T3 and T4) levels. Farmers had significantly lower serum testosterone (20.93 ± 1.03 nM vs. 24.32 ± 1.32 nM; P < 0.05) and higher androstenedione level (3.83 ± 0.20 nM vs. 2.80 ± 0.15 nM; P < 0.001). Their serum free testosterone as well as bioavailable testosterone were unchanged, while estradiol/testosterone and androstenedione/testosterone ratios were significantly increased (0.45 ± 0.03% vs. 0.33 ± 0.02%; P < 0.01 and 12.26 ± 3.64 vs 19.31 ± 6.82; P < 0.001, respectively). Our results suggest that male farmers of Djutitsa (West Cameroon) are exposed to agropesticides due to improper protective tool, and this exposure may impair their reproductive function through inhibition of testosterone synthesis; probably by inhibition of testicular 17β- hydroxysteroid dehydrogenase (17HSD3) and induction of aromatase (CYP19).


Lewis et al., 2015

Lewis RC, Cantonwine DE, Del Toro LV, Calafat AM, Valentin-Blasini L, Davis MD, Montesano MA, Alshawabkeh AN, Cordero JF, Meeker JD, “Distribution and determinants of urinary biomarkers of exposure to organophosphate insecticides in Puerto Rican pregnant women,” The Science of the Total Environment, 2015, 512-513:337-44, DOI: 10.1016/j.scitotenv.2015.01.059.

ABSTRACT:

Globally, human exposures to organophosphate (OP) insecticides may pose a significant burden to the health of mothers and their developing fetuses. Unfortunately, relevant data is limited in certain areas of the world concerning sources of exposure to OP insecticides in pregnant populations. To begin to address this gap in information for Puerto Rico, we studied repeated measures of urinary concentrations of 10 OP insecticide metabolites among 54 pregnant women from the northern karst region of the island. We also collected demographic data and self-reported information on the consumption of fruits, vegetables, and legumes in the past 48 h before urine collection and home pest-related issues. We calculated the distributions of the urinary biomarkers and compared them to women of reproductive age from the general U.S. population. We also used statistical models accounting for correlated data to assess within-subject temporal variability of the urinary biomarkers and to identify predictors of exposure. We found that for all but two metabolites (para-nitrophenol [PNP], diethylthiophosphate [DETP]), 50th or 95th percentile urinary concentrations (the metric that was used for comparison was based on the biomarker’s detection frequency) of the other eight metabolites (3,5,6-trichloro-2-pyridinol [TCPY], 2-isopropyl-4-methyl-6-hydroxy-pyrimidine, malathion dicarboxylic acid, diethylphosphate, diethyldithiophosphate, dimethylphosphate, dimethylthiophosphate [DMTP], dimethyldithiophosphate) were somewhat lower in our cohort compared with similarly aged women from the continental United States. TCPY, PNP, DETP, and DMTP, which were the only urinary metabolites detected in greater than 50% of the samples, had poor reproducibility (intraclass correlation coefficient range: 0.19-0.28) during pregnancy. Positive predictors of OP insecticide exposure included: age; marital or employment status; consumption of cherries, grape juice, peanuts, peanut butter, or raisins; and residential application of pesticides. Further research is needed to understand what aspects of the predictors identified influence OP insecticide exposure during pregnancy. FULL TEXT


Lerro et al., 2017

Lerro CC, Beane Freeman LE, Portengen L, Kang D, Lee K, Blair A, Lynch CF, Bakke B, De Roos AJ, Vermeulen RC, “A longitudinal study of atrazine and 2,4-D exposure and oxidative stress markers among Iowa corn farmers,” Environmental and Molecular Mutagenesis, 2017, 58:1, DOI: 10.1002/em.22069.

ABSTRACT: Reactive oxygen species, potentially formed through environmental exposures, can overwhelm an organism’s antioxidant capabilities resulting in oxidative stress. Long-term oxidative stress is linked with chronic diseases. Pesticide exposures have been shown to cause oxidative stress in vivo. We utilized a longitudinal study of corn farmers and non-farming controls in Iowa to examine the impact of exposure to the widely used herbicides atrazine and 2,4-dichlorophenoxyacetic acid (2,4-D) on markers of oxidative stress. 225 urine samples were collected during five agricultural time periods (pre-planting, planting, growing, harvest, off-season) for 30 farmers who applied pesticides occupationally and 10 controls who did not; all were non-smoking men ages 40-60. Atrazine mercapturate (atrazine metabolite), 2,4-D, and oxidative stress markers (malondialdehyde [MDA], 8-hydroxy-2′-deoxyguanosine [8-OHdG], and 8-isoprostaglandin-F [8-isoPGF]) were measured in urine. We calculated β estimates and 95% confidence intervals (95%CI) for each pesticide-oxidative stress marker combination using multivariate linear mixed-effect models for repeated measures. Farmers had higher urinary atrazine mercapturate and 2,4-D levels compared with controls. In regression models, after natural log transformation, 2,4-D was associated with elevated levels of 8-OHdG (β = 0.066, 95%CI = 0.008-0.124) and 8-isoPGF (β = 0.088, 95%CI = 0.004-0.172). 2,4-D may be associated with oxidative stress because of modest increases in 8-OHdG, a marker of oxidative DNA damage, and 8-isoPGF, a product of lipoprotein peroxidation, with recent 2,4-D exposure. Future studies should investigate the role of 2,4-D-induced oxidative stress in the pathogenesis of human diseases.


Lanphear et al., 2005

Lanphear BP, Vorhees CV, Bellinger DC, “Protecting children from environmental toxins,” PLoS Medicine. 2005, 2:3.

ABSTRACT: Not Available

FULL TEXT


Kabasenche and Skinner, 2014

Kabasenche WP, Skinner MK, “DDT, epigenetic harm, and transgenerational environmental justice,” Environmental Health, 2014, 13:62, DOI: 10.1186/1476-069X-13-62.

ABSTRACT:

Although the environmentally harmful effects of widespread dichlorodiphenyltrichloroethane (DDT) use became well-known following Rachel Carson’s Silent Spring (1962), its human health effects have more recently become clearer. A ban on the use of DDT has been in place for over 30 years, but recently DDT has been used for malaria control in areas such as Africa. Recent work shows that DDT has transgenerational effects in progeny and generations never directly exposed to DDT. These effects have health implications for individuals who are not able to have any voice in the decision to use the pesticide. The transgenerational effects of DDT are considered in light of some widely accepted ethical principles. We argue that this reframes the decision to use DDT, requiring us to incorporate new considerations, and new kinds of decision making, into the deliberative process that determines its ongoing use. Ethical considerations for intergenerational environmental justice are presented that include concern and respect for autonomy, nonmaleficence, and justice. Here, we offer a characterization of the kinds of ethical considerations that must be taken into account in any satisfactory decisions to use DDT. FULL TEXT


Jensen et al., 2016

Jensen PK, Wujcik CE, McGuire MK, McGuire MA, “Validation of reliable and selective methods for direct determination of glyphosate and aminomethylphosphonic acid in milk and urine using LC-MS/MS,” Journal of Environmental Science and Health – Part B, 2016, 51:4, DOI: 10.1080/03601234.2015.1120619.

ABSTRACT:

Simple high-throughput procedures were developed for the direct analysis of glyphosate [N-(phosphonomethyl)glycine] and aminomethylphosphonic acid (AMPA) in human and bovine milk and human urine matrices. Samples were extracted with an acidified aqueous solution on a high-speed shaker. Stable isotope labeled internal standards were added with the extraction solvent to ensure accurate tracking and quantitation. An additional cleanup procedure using partitioning with methylene chloride was required for milk matrices to minimize the presence of matrix components that can impact the longevity of the analytical column. Both analytes were analyzed directly, without derivatization, by liquid chromatography tandem mass spectrometry using two separate precursor-to-product transitions that ensure and confirm the accuracy of the measured results. Method performance was evaluated during validation through a series of assessments that included linearity, accuracy, precision, selectivity, ionization effects and carryover. Limits of quantitation (LOQ) were determined to be 0.1 and 10 µg/L (ppb) for urine and milk, respectively, for both glyphosate and AMPA. Mean recoveries for all matrices were within 89-107% at three separate fortification levels including the LOQ. Precision for replicates was ≤ 7.4% relative standard deviation (RSD) for milk and ≤ 11.4% RSD for urine across all fortification levels. All human and bovine milk samples used for selectivity and ionization effects assessments were free of any detectable levels of glyphosate and AMPA. Some of the human urine samples contained trace levels of glyphosate and AMPA, which were background subtracted for accuracy assessments. Ionization effects testing showed no significant biases from the matrix. A successful independent external validation was conducted using the more complicated milk matrices to demonstrate method transferability. FULL TEXT


Back To Top